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EXECUTIVE SUMMARY

Introduction

The application of adaptive optics technology to laser-beam control has been under investigation
within the mil'tary community since the early 1970s. This work has encompassed a wide range of
theoretical investigations as well as an impressive suite of laboratory and field experiments. During this
period a number of real-time systems incorporating several hundred degrees of freedom have been built
and tested, and the technology to extend this number by at least an order of magnitude is now under
development.

To exploit adaptive-optics concepts in the construction of astronomical telescopes, the budgetary
restrictions under which this field of research operates must be considered and improvements in system
performance must be carefully balanced against equipment complexity, reliability, and cost. To accom-
plish this design trade-off, a set of concise analytic models describing the essential properties of a laser
guide-star phase-conjugation system has been assembled. With the aid of these models, an optimization
strategy for mating adaptive optics to a 4-m-class optical telescope has been developed; research shows
that such a system might be expected to improve the effective atmospheric seeing conditions by nearly
a factor of 10 within the isoplanatic patch of the turbulence probe.

The Laser Guide-Star Concept

Few celestial objects are bright enough to permit accurate wavefront measurements by a phase
sensor. A solution to this problem was first discovered in the early 1980s by investigators in the high-
energy laser-beam-control community. The technique involves the use of a pulsed laser beam that is
projected along the path to the target object; backscatter generated by molecules and particulates in the
atmosphere provides a synthetic probe, which can be used to obtain reliable turbulence measurements.
The quality of the data provided by this type of source is strongly affected by the altitude of the beacon
and the size of the collection aperture. Residual phase errors due to focal anisoplanatism (which is related
to the difference in range between the synthetic beacon and the target object) and offset anisoplanatism
{which arises from the need to obtain tracking information from a bright neighboring star) represent
driving factors in the overall performance of the adaptive-optics system.

An Analytical Treatment of Atmospheric Turbulence

To a large extent, the success of this investigation can be attributed to the extensive use of a new
analytic model that accurately describes the principal anisoplanatic effects. This formulation incorporates
the Rytov approximation (appropriate for siowly varying turbulence and low scintillation) in the devel-
opment of integral expressions for the aperture-average phase error. In the most general case, the solution
requires a six-fold integration, but four of these integrals are easily performed using standard mathemati-
cal techniques. Of the two remaining integrals, which involve the transverse spatial spectrum and the
propagation path, the first is performed using an innovative approach that applies Mellin-transform
theory. For most problems of interest, the final solution can be expressed as a rapidly converging series
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expansion that incorporates the turbulence moments. A brief description of the approach and denvations
of the most important phase-error formulas can be found in Appendix A.

An Optimized Design for Guide-Star Systems

For an adaptive-optics system to be useful in astronomical investigations, a significan! improve-
ment in resolution (in excess of a factor of 2) must be achieved over a large fraction of the nighttime
sky. A series of computer simulations in which the quality of the phase correction was varied has
determined that the high-spatial-frequency (figure) component of the phase error can be no more than 3
rad? if this goal is to be achieved. If this criterion is satisfied, the effective resolution of a long-exposure
image will be determined by tracking jitter, which in most cases is dominated by anisoplanatic errors
related to the angular offset between the target object and the tracking star. Therefore, resolution and sky
coverage are intimately related; an improvement in one of these factors can only be achieved to the
detriment of the other.

Figure ES-1 illustrates the relationship between achievable resolution and fractional sky coverage.
Although it is theoretically possible to build an adaptive-optics system that provides a tenfold improve-
ment in the resolution of a 4-m telescope operating in the visible, the probability of finding a suitable
tracking star to maintain the requisite tilt jitter is predicted to be only 1 percent. On the other hand, a
factor-of-4 improvement can be attained with near-unity probability. As discussed in Section 4, such a
system would require approximately 300 actuators operating at a correction bandwidth of 20 Hz and a
beacon laser capable of maintaining an average power level of 50 W.
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Figure ES-1. The fraction of the sky over which a given resolution can be attained for a laser guide-star compen-
sation system. Effects of residual image motion due to finite tracker bandwidth, limited signal, und offset anisoplanatism
have been included. The uncorrected seeing at 0.55 jim is 0.85 arc sec for the atmospheric conditions used in this
study.
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1. INTRODUCTION

The application of adaptive optics to laser-beam control problems has been under investigation
within the military community since the early 1970s. This work has encompassed a wide range of
theoretical investigations as well as an impressive suite of laboratory and field experiments. During this
period a number of real-time systems incorporating several hundred degrees of freedom have been buil:
and tested, and the technology to extend this number by at least an order of magnitude is now under
development.

The designers of laser-propagation systems are frequently concemed with uncooperative-target
engagements in which the target return is either too weak or improperly positioned to be used effectively
as a lurbulence probe. A potential solution, which involves the use of backscatter from laser beams
focused in the atmosphere, was first proposed to the defense community by Feinleib in 1982 [1] and later
independently published by Foy and Labeyrie in 1985 [2]. Since that time, a number of alternative
schemes have been considered to achieve near-diffraction-limited beam profiles; these schemes include
arrays of low-altitude sources and high-altitude beacons formed within the earth’s sodium layer.

This report presents an overview of a body of theoretical work that has been the foundation for
several laser guide-star experiments conducted by Lincoln Laboratory {3-5]. Although the original intent
of this investigation was to develop a means to propagate near-diffraction-limited laser beams through the
atmosphere, recent changes in classification guidelines have made it possible to apply these techniques
to ground-based astronomical telescopes. In keeping with the original emphasis on near-perfect turbu-
lence compensation for short wavelengths and marginal seeing conditions, however, the actuator densities
and correction bandwidths discussed are generally much higher than those recommended by other authors

[6].

To lay the proper groundwork for the design guidelines presented at the end of this report, it is
necessary to first review the inherent limitations of the phase-conjugation process and justify the need for
synthetic-beacon tusbulence probes. Section 2 of this report concentrates on conventional adaptive-optics
systems; in this context, the term “conventional” refers to systems having acc-ss to a real beacon located
within the isoplanatic patch of the target object. Section 2 also introduces the turbulerce- and wind-profile
models that are the basis for all the numerical calculations that follow. The isoplanatic errors associated
with the deployment of synthetic beacons are the main topic of Section 3, where a brief comparison of
single- and multiple-beacon geometries is also presented.

The main thrust of this investigation is presented in Section 4, in which a methodology is proposed
for balancing the major sources of compensation error to optimize the performance of an adaptive-optics
system. Recognizing that constructs exploiting natural-star beacon illumination are highly desirable from
a cost perspective, Section 4 contains a quantitative discussion of fractional sky coverage for both natural-
and synthetic-beacon systems. In conclusion, significant benefits accrue with the use of loser guide stars,
but the development of more compact and less expensive laser sources will be necessary before this
approach becomes practical for widespread application.




2. FUNDAMENTAL CONCEPTS

To avoid ambiguity in the systems analyses that follow, a brief discussion of some of the more
important turbulence issues is given in this section. Of particular interest is the treatment of Strehl ratio
(on-axis inter.. iy relative to a diffraction-limited image) and resolution for systems capable of partial
phase compensation.

2.1 STATISTICAL DESCRIPTION OF ATMOSPHERIC TURBULENCE

A quantitative treatment of optical turbulence usually begins with a statistical description of the
index of refraction. A useful quantity is the structure function, which represents the expected variance in
refractive index between two points

D, = ((n(H)-nR)’) | @1

where 7j and 7 are three-dimensional vectors. Kolmogorov {7] has shown that in the in=rtial subrange
this function is isotropic and proportional to the 2/3 power of the scalar distance, r;

D, (r)=Crr)r** | (2-2)

The C 3 parameter characterizes the strength of the refractive index fluctuations as a function of the
altitude, A. From this cxpression, Fried [8] de-ived the form of the phase structure function at the surface
of a collection aperture

Dy(r)=2.91k* r*® sec({) [ C2(A)dh (2-3)

where k = 27/4 is the optical wavenumber, { is the zenith angle, and the integral is performed over the
beam path. (MKS units have been assumed in computing the leading constant.) Fried found it convenient
to define a turbulence coherence length, r,, over which the gross wavefront distortion can be described
as a uniform tiit. Thus,

5/3
D¢(r)=6.88(r/rb) = (2-4)
where
~3/5
o= {0.423k2 scc(g)fcz(ﬁ)dﬁ} o (2-5)

An aperture of dimension ry will produce a nearly diffraction-limited far-field image that will appear to
change position as the atmosphere evolves with time. This parameter establishes the critical spatial
“'mension of a subaperture, within which a unique phase error can be measured and subsequently
corrected by the movement of a single mechanical actuator.




2.2 TURBULENCE AND WIND-VELOCITY MOMENTS

Turbulence calculations make widespread use of turbulence-profile integrals of the type indicated
in Equation (2-3). The n® moment is defined in the following manner:

u, = [CHAE"dh 2-6)

where the integral is taken over the entire turbulence region. The Jow-order moments are most sensitive

to ground-level turbulence, whereas the high-order moments are more heavily influenced by upper-

altitude turbulence. Using this notation, the expression for the coherence length would be
o ={0.423k% sec() }'3"5 : (2-5)
o =¥ Ho

The isoplanatic patch, which defines the angle within which the distortion over the turbulence path will

be essentially unchanged, can be shown to depend on the 5/3 moment

-3/5

-3/5 , -
6, = {2,912 sec¥(¢) [ C2() 45 ) ={2.91k2 sec®3({) ,u5j3} (-7

The temporal characteristics of turbulence-induced phase perturbations are often mcdeled on the
assumption that turbulence can be described as a set of frozen layers, each of which moves across the
aperture at speeds that vary as a function of altitude. For simplicity, the direction of motion is assumed
to be perpendicular to the plane containing the zenith angle. The velocity moments have the following
form:

v, = j Ci(h)v"(h) dh (2-8)

where ¥(h) is the wind-velocity function. A critical time constant specifying the interval over which
turbulence remains essentially unchanged derives from Greenwood [9], and can be expressed as a func-
tion of the 5/3 velocity moment

~3/5 -3/5
T, = {2.91k2 sec({) J Cf(h)a5/3(ﬁ) dﬁ} = {2,9 1k2 sec({) ,,5/3} . 2-9)

To attach numerical values to these critical system parameters, baseline profiles must be established
for turbulence and wind velocity. During the past two decades, several dozen models have been devel-
oped in an attempt to describe refractive-index measurements made at a variety of locations throughout
the world. For daytime conditions at inland sites, the SLC-Day (standardized under the Submarine-Laser
Communications program) and the Hufnagel-Valley turbulence models are frequently used for systems
analysis. [See Equations (C-1} and (C-2) in Appendix C.] To the best of our knowledge, however, there
are no standard turbulence profiles for good astronomical sites and nighttime viewing conditions where
the seeing, defined as

i
6 . =12% (2-10)

seeing ~ %




is often better than 0.5 arc-seconds [10]. Therefore, the authors have elected to assemble a modified
version of the Hufnagel-Valley profile that yields a 20-cm r;, and a 20-prad 6, for 0.55 pm radiation at

zenith

C2 (k) =8.16x107>* £10 exp(-£/1000) +3.02x107 17 exp(-£/1500)
+1.90x10~13 exp(~A/100)

@2-11)
Note that the altitude is given in meters and the units of C? are m™>.

Temporal fluctuations in the cumulative phase distortion are somewhat less critical to this analysis;
therefore, for the wind profile a standard form proposed by Bufton is used:

o(f)=5+30 exp{~{(A - 9400)/4800]2} . 2-12)

The units for this expression are m/sec.

The turbulence and wind models are plotted as a function of altitude in Figures 1 and 2, respec-
tively. A comparison of key turbulence parameters can be found in Table 1.
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Figure 1. Comparison of the HV-21 model typically used for calculations of daytime turbulence and the modified
HV model developed by the authors to represent nighttime turbulence conditions at good seeing locations.
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TABLE 1
Summary of Turbulence Parameters for imaging Systems Operating at 0.55 um

To Oseeing 6g %o
(cm) (arc-sec)| (mrad) | (msec)

SLC-Day 0° Zenith 57 24 13.8 2.7
Model

45° Zenith 4.6 3.0 8.0 2.2

HV-21 0° Zenith 5.6 25 7.8 2.1
Modei

45° Zenith 4.5 3.1 45 1.7

Modified HV 0° Zenith 20.0 0.69 20.0 6.3
Model

45° Zenith 16.2 0.85 115 5.1

2.3 PERFORMANCE MODELS FOR CONVENTIONAL ADAPTIVE-OPTICS SYSTEMS

An adaptive-optics system for real-time phase conjugation can be characterized as a highly-parallel
servo device capable of sensing and correcting the incoming wavefront at the pupil plane of an imaging
sensor. Performance close to the diffraction limit of the input aperture can be achieved in the limit that
the angular separation between the turbulence probe and the target object is small (<§,), the spacing
between control elements on the active optical element is well matched to the turbulence coherence length
(<ry), and a sufficiently high update rate is maintained (>1/7,). In most practical implementations of this
concept, however, performance compromises are necessary to reduce component costs and maximize the
sensitivity of the wavefront sensor. At this point, a brief description of the architecture of an adaptive-
optics system is appropriate. A more detailed discussion of the basic components and an interesting
overview of the early history of this field can be found in John Hardy’s classic paper on this subject [11].

The four essential elements of a conventional adaptive-optics system are shown in Figure 3. Light
originating from an exoatmospheric source is corrupted in both amplitude and phase as a result of random
fluctuations in the refractive index of the intervening air. The quality of the image formed at the focus




of a ground-based telescope is largely driven by phase distortions, which can be corrected through the
insertion of an optical surface having the conjugate optical path difference (OPD). Most compensation
systems apply this conjugate phase with a pair of active elements consisting of a high-speed tilt mirror
and a deformable mirror that removes the figure (tilt-removed) component of the distortion. Error signals
are generated by the phase sensor, which actually measures the first derivative of the phase of the
incoming wavefront. A phase-computation device, referred 1o as a reconstructor, transforms the output
of the wavefront sensor into a set of drive signals that control the active optical elements.

Each of these components has a unique set of error mechanisms that together establish the overall
effectiveness of the adaptive-optics system. In the following sections, the first-order effects of these errors
are quantified; the most important effects are then combined in a servo-loop model that provides a concise
description of the dynamic performance characteristics.
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Figure 3. Essential components of an adaptive-optics phase-compensation system. Error signals developed from
the phase difference between the incoming wavefront and the deformable mirror are measured by the phase sensor
and subsequently applied to the two active optical elements.

2.3.1 The Wavefront Sensor

Essentially all wavefront-sensing instruments in current use measure local changes in the pupil-
plane phase function; a direct determination of phase is difficult because a coherent full-aperture reference




would be required. At least three sensing techniques have been successfully demonstrated: Hartmann
sensors, in which the input pupil is segmented by a set of lenslets that form separate images of the source
in the Fourier plane [11]; shearing sensors that convert phase gradients into intensity variations {11]; and
sensors that measure local wavefront curvature [12]. The noise characteristics of the Hartmann and
shearing sensors are similar and reasonably well understood, although the former is more easily de-
scribed. For this reason, the Hartmann design will be used as the prototype in this analysis.

The sensor model used in this study is based on the realization illustrated in Figure 4. A lenslet
array placed at an image of the pupil plane is used to generate a set of independent far-field images; the
positions of these images are linearly related to the wavefront tilt over the lenslets’ diameter. An amray
of sensors is then employed to measure the centroid position of each of the focused spots.

Although the first detector arrays were composed of discrete photomultiplier tubes, these were later
replaced by image intensifiers mated to solid-state cameras and, more recently, by high-quantum-eff-
ciency CCDs [13]. Because the noise level of a CCD camera is proportional to the square root of the read-
out bandwidth, it is often advantageous to use separate imagers to perform the x- and y-gradient
measurements. This configuration allows on-chip data summation to be performed in the direction per-
pendicular to the gradient measurement and reduces the number of data points from n? to 2n per subaperture.
Under these conditions, a one-dimensional sensor model incorporating a linear subarray of n pixels is
sufficient to describe all relevant effects. The size of the subarray will depend on the required dynamic
range, although a pair of elements per subaperture per camera should be adequate for continuous wave
(CW) operation under benign turbulence conditions.

To simplify this discussion of phase-sensor performance, it will be assumed that the lenslets divide
the pupil plane into an array of subapertures of dimension d,. (The physical components are generally
much smaller than the collection aperture and would be placed in a collimated region of the optical path
at the output of the telescope.) For a phase change of one wave across the subaperture, the Hartmann spot
will experience a linear translation of A f/d_, where f is the lenslet focal length and A is the wavelength
of the turbulence probe. Near the null position of a two-element centroid detector, an appropriate linear
algorithm for determining the local gradient would be

(2-13)

2n{ =% TR (o subaperture)
= rad / subaperture
E= M a0y T, + 1, pertiel,
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Figure 4. Schematic description of a Hartmann wavefront sensor. The incoming wavefront is divided into a matrix
of subapertures by a lenslet array, which produces a set of focused spots onto a detector array. The displacement
of the spots from their local null position provides a measure of the local phase gradient.

where I7x) is the normalized intensity distribution of the Hartmann spot and the symbols I, and I'p
represent the number of photoelectrons collected by the left and right detector elements, respectively. 1f
the spot is diffraction-limited,

. 2
Ir(x) =( d, ){sm(n’d,x/l f)} 214

Af) mdx/Af

for a square lenslet, where I10) is simply the inverse of the spot diameter, dspm. When the subaperture
becomes much larger than 7, the spot diameter will be roughly proportional to Af/ry. Yura [14] suggests
the following profile for the general case:

fl d 2 . 1/3

el s - £

e 2] -02)
s 0 s

(2-15)




Combining Equations (2-13) and (2-15) yields the following result:

2
d ) -T,+TI
g=7r\}1+[—’] L=k (2-16)

n) To+Tg

The photon noise associated with the centroid detector characterized by Equation (2-16) is readily
developed by applying Poisson statistics to the detector outputs, so that the count variance in each pixel
is equal to the absolute number of photoelectrons. Using N, = 2(]' L+ 71; R) to represent the total number
of photoelectrons collected by the x and y sensors within a single subaperture, an expression for the
gradient variance for a beam near the null position is derived:

2
) 2”z[l+(ds/’o) ] : 2-17)
o2 = :

g N,

The second major error is a result of random signal fluctuations generated by the transfer of
photoelectrons through the detector array, off-chip preamplifiers, and digitizers. This uncorrelated noise
variance, represented by szs, can be reduced relative to the photon-noise contribution if an optical
intensifier having a net photoelectron gain of G, is placed at the entrance aperture of the wavefront
sensor. Assuming that each pixel has an identical noise contribution, the following expression is obtained
from Equation (2-16):

2 2
2 2
27 4 Y 8 [1+(ds/r0) ]Nrms . (2-18)
02 =2 14| =| | N2 =-
g GN r ms 2
<P ° (GeNpe)

A more general expression for subapertures that incorporate more than two elements is derived in Section
C.2 of Appendix C.

Equations (2-17) and (2-18) provide an accurate description of the performance of a Hartmann
sensor; to maintain generality, however, a few additional concepts will be introduced at this time. To

allow for the possibility that the compensation wavelength, 4 , differs substantially from the phase sensor
wavelength, ).P, the multiplicative factor (kc /kp) must be inserted to convert the error expression to rad?
of phase error at A_. Furthermore, because it is convenient to define the fundamental turbulence param-
eters (ry, 6,, and 7)) at the compensation wavelength, it can be seen from Equation (2-5) that the
turbulence coherence length at lp is properly given by (kl/kc)ﬁ’sro. Finally, the following representation
will be applied for the number of collected photoelectrons:

2n 2
N = P ntydgl, (2-19)
P
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where I (W/m?) is the irradiance at the entrance of the wavefront sensor, 1 is the sensor quantum
efﬁcxency, 1, is the sensor dwell time, and d2 is the subaperture collection area. The final result is

p 12/5 2 12/5 2

k2 kb, d 2 ky s 2

mhe| |1+ 2| |-= 2(hck ) 1+ =1 |N

k k r c r ms

( ” ) p c 0 c 0
figure Jnoise nt,d2 1 2
2
d%s 'p (Ge nt,d Ip )
photon noise Sensor noise

(2-20)

Notice that the photon-noise term is independent of the subaperture size when d_ is much larger than the
coherence length for lp. In this regime, the noise reduction expected with an increased subaperture
diameter {due to the larger number of detected photons) is directly offset by a reduction in sensitivity to
wavefront gradients.

The mootivation for using low-noise CCD arrays as opposed to intensified cameras for wavefront
sensing is addressed in Figure 5. Although the gain of an intensifier can always be made high enough
to obtain photon-noise-limited operation, the quantum efficiency of these devices seldom exceeds 10
percent. In contrast, backside-illuminated CCD cameras are now available that are better than 80 percent
efficient in the visible and can operate at high frame rates with transfer noise levels in the 20-40-electron
range. Within the normal range of operation for high-quality turbulence compensation (where the average
gradient error would be lower than A/10), the performance of a well-designed CCD system is expected
to surpass that of the intensified camera. For this reason, the wavefront sensor in current use at Lincoln
Laboratory incorporates a pair of custom-built 64 X 64-CCD focal planes.

\ CCD SENSOR

\ /T\=0.a

15 \ Nys = 20

PRI NI A GNP U

INTENSIFIED CAMERA 4

-
& =
©
« 3
-
w o
v -
(*] [ \
Z 1 ~
| 3
&<
E -
o . n=01
= :
[+
o L.
b

[+] I TN T | N WA WO WS S WY YENU TN U TR S G N W S S
0 200 400 600 800 1000
PHOTONS PER SUBAPERTURE

Figure 5. Performance comparison of the two major types of Hartmann-sensor cameras. This calculation was per-
formed for a phase sensor having two pixels per subaperture subarray and a subaperture dimension smaller than r,,
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2.32 The Phase Reconstructor

In the limit of infinite measurement resolution, the relationship between the phase, ¢, and the phase
gradient, g, is given by the Poisson equation, with Neumann boundary conditions,

Vip=divg . (2-21)

For a discrete-measurement system, this relationship can be represented by a linear process

E=A¢ , (2-22)

in which & and @ are vectors and A is a two-dimensional matrix. The least-square solution to this
equation can be recovered from the generalized inversion of the A matrix

o= {(A'A)_lA}é =Bg . (2-23)

Because B is invariant for a given sensor configuration, the matrix inversion only needs to be performed
once and can be preprogrammed into the computational device.

Modern reconstructors employ digital processors that can perform the matrix operation indicated
in Equation (2-23) within a time period much smaller than the turbulence timne constant. For example,
the reconstructor built by Lincoln Laboratory for a set of recent field experiments performs a 241 X 436
matrix calculation with 8-bit precision in less than 50 psec; this corresponds to an average computational
rate of the order of 10° operations per second [15]. Mathematical techniques are currently under devel-
opment that would permit much larger arrays to be processed even more efficiently.

The noise characteristics of a reconstructor are defined by its error propagator, which is a multi-
plicative constant that relates the variance of the input gradient measurements to the variance of the
output phase estimates. Herrmann [16] has shown that the error propagator for a compensation system
that has a few hundred actuators is approximately unity.

In summary, a well-designed reconstruction system will introduce no significant temporal delay or
excess noise into the phase-compensation process.

2.3.3 The Deformable Mirror

Several innovative mirror designs have been developed in the last ten years that incorporate either
modal (Zernike deconvolution) [12] or zonal control of the mirror surface [17,18); both continuous-
surface and segmented-mirror designs have been successfully demonstrated. The 14-cm deformable mirror
in current use at Lincoln Laboratory is an Itek design that incorporates a set of 241 discrete actuators
mated to a thin glass facesheet, as illustrated in Figure 6. The characteristics of the facesheet have been
chosen to provide a smooth transition between actuator drive points under normal turbulence conditions
and to yield a fitting error of better than 1/20 wave rms over a 60-cm telescope aperture. The actuators
are made by stacking thin sections of lead magnesium niobate (PMN), which is a low-voltage electrostrictive
material. A deflection of 1.5 pm has been measured with a drive voltage of 150 volts; the average full-
stroke settling time is on the order of 200 psec. At this speed, the temporal characteristics of the mirror
have a negligible effect on the overall system performance.
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Figure 6. Cross-section of a rypical deformable m. -ror employing a flexible facesheet and a rwo-dimensional array
of actuator stacks. The actuators are cemented to the facesheet so that the surface can be deformed by either
extending or contracting the actuator dimension.

The major degrading effect associated with a deformable mirror is fitting error, which occurs
whenever the actuator spacing in the pupil plane exceeds the turbulence coherence length. Greenwood
[19] has derived a relationship between the error variance and the number of actuators, N,

2
(oﬁgure

313 \-5/6 (2-24)
=(.274| D, N :
)ﬁtting ( /rO) a

which can be rewritien to reflect the error associated with a subaperture spacing of d, :

5/3 24’
(02 )ﬁtﬁng=0.34(ds AR (2-24")

figure

The general form of this equation has been verified in simulation studies using the measured parameters
of Lincoln’s deformable mirror, although the leading constant has been found to vary between 0.4 and
0.8, depending on how the outer edge of the flexible mirror surface is constrained. These effects can be
minimized by employing at least one ring of active actuators outside the illuminated region of the aperture
to provide a smooth transition between the mirror interior and the support collar. For the purpose of this
study, the following, somewhat more conservative, estimate will be adopted:

5/3
2 ~ / 2-25
(Gﬁgure )fitting - O'S(ds/ro) ’ ( )

234 A Time-Dependent Madel of the Phase-Compensation Process

The individual characterizations of component performance provide no information about the dy-
namic effects that drive the update rate of an adaptive-optics system. This issue is perhaps best addressed
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by constructing a servo-loop mode! for each of the active control elements. Thus, two classes of models
will be required—one to describe the movement of the actuators on the deformable mirror and one for
the control of the tilt mirror. The final result will be a set of error expressions, the first of which describes
the total figure distortion:

(Gtz‘lgure)

S€rvo

= ij(f)Ff(f)df + ITﬁ,(f)an(f)df (rad® of phase) . (2-26)
0 0

v ~

b . v S .
turbulence-induced figure error figure noise

and similarly for the overall tilt error,

T.(f)Fa(f)df  (rad’ of tilt) . (2-27)

servo

() = [TOENe +
0

(O Sy §

]

| U v
wrbulence-induced tilt error tilt noise

The first term in each of these equations is the residual error due to uncompensated turbulence, whereas
the second term is the noise associated with a finite signal into the sensor. The parameters 7(f) and F(f)
iepresent servo transmission functions and signal power spectra, respectively. Because the power spectra
for figure and tilt are quite different, the bandwidth requirements for each must be developed separately.

A schematic diagram of the servo system is provided in Figure 7. The wavefront sensor measures
the difference between the optical phase of the incoming wavefront and the phase applied to the deformable
mirror. This error signal is averaged over a dwell time, 7, and subsequently passed to an accumulator
that adds the measured error to the previous mirror-drive position. For simplicity, the mirror update is
assumed 1o occur as a step input at the end of each integration cycle, and each mirror correction is held
until the next update. This quasi-CW representation accurately describes the operation of modern digital-
contro} architectures.
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Figure 7. Servo-loop diagram for a digital control system employing a boxcar averaging device and a digital
accumulator. The error signal at the wavefront sensor is averaged for a period of T, The accumulator provides
the deformable mirror with an impulse drive signal u: the end of each integration interval; this signal is subse-
quently held until the next drive signal.

Frequency-domain modelis for each of the components shown in Figure 7 can be found in a number of
standard texts [20]. The phase error sampling system is described by the function

sin(7 f 74) xexploi f ;)= 1-exp(—i2z f 1;)
nf1y, Anfty >

Hy(f)= (2-28)

which includes an integration period of 7, and an average delay time of 7,/2 between the input and output

signals. The digital accamulator, which adds the incremental error signal to the current mirror position,
is represented by

- &
H,(f)= m . (2-29)
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where g, is a normalized loop-gain constant. Finally, the drive response for a mirror time constant, T,
would be

1

H,(f)= m . (2-30)

Generally, 7«7, for state-of-the-art hardware, so this term can be safely ignored.

From the component transfer functions given above, an equivalent control-circuit descnption can
be developed for the propagation of optical turbulence and electrical noise through the system. The net
loop response to atmospheric turbulence is found to be

‘ 1 ‘2 (2nf )
T. = =
R WYY R " ~ e
4sin®(m f 14)| ——= -8, |+ (27 f 14)
(27 f1,)

The noise transfer function obtains from the assumption that electrical noise originates in the sensing
device and is transferred to the control elements through the signal averager and accumulator. Therefore,

_LH (f)H [ I
W+ H(NH| ~ (@rfr,) L, (em f)t . (2-32)
g ag;sin’(nf1,)

T.(f)

These two equations are plotted as a function of normalized frequency and gain in Figures 8 and 9. The
transfer curve for turbulence has the characteristics of a high-pass filter, whose shape most closely
matches an ideal step function when the gain is approximately equal to one. By contrast, the noise transfer
curve for this system is a low-pass filter, which is also optimized when g, = 1. Both of these expressions
are greatly simplified for gain of unity, resulting in the approximations

@rft,) +(2nf) 12
T.(f) = .
o) 1+2rfr) 1z (233
and
1
T =
) 1+(2zf1,) 12 (2-34)

The turbulence-rejection bandwidth of the first of these functions is approximately 1/10t, whereas the
integral of the noise transfer function is about 1/37,
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Figure 8. Turbulence transfer function for a quasi-CW closed-loop compensation system as a function of loop gain.
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Figure 9. Noise transfer function for a quasi-CW closed-loop compensation system as a function of loop gain.
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To complete this analysis, four sets of signal spectra are required to describe the effects of turbu-
lence and noise on both the figure- and tili-compensation systems. The figure component of turbulence
is developed from a paper by Greenwood and Fried [21], which is discussed in more detail in Section
C.3 of Appendix C. This spectrum, which is plotted in Figure 10, can be approximated by a function
having two segments

0.132sec(Q)k2 D* i v ¥® f43 1 £ <0.705D7 g 033
Fi(f)= 35
53

0.0326sec(Z)k? vs3 f‘sf’3 £ 20.705D7\u3* (2-35)

The units are rad” of phase error per Hz. A concise treatment of full-aperture tilt was recently published
by Tyler [22]. This spectrum also has a simple form in its low- and high-frequency limits that can be
joined at their intersection to give

) 160 sec({)v_ys £ : £<0.445 D! ”:1‘35 Ve
F(f)= -
0.028 SCC(C) D‘_5 'U14/3 f—l7/3 f 20.445 D_ ”1/5 U}4/3 (2_36)

where the units here are rad? of single-axis tilt per Hz and normalized for integration over positive values
of f. A plot of this function for a 4-m aperture is given in Figure 11.
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Figure 10. Power spectrum for turbulence-induced figure error. This model incorporates atmospheric moments
developed from the modified Hufnagel-Valley turbulence profile and the Bufion wind profile.
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Figure 11. Power spectrum for turbulence-induced tilt error, given in units of rad? of single-axis tilt per Hz. This
model incorporates atmospheric moments developed from the modified Hufnagel-Valley turbulence profile and the
Bufton wind profile.

The figure component of the noise power spectrum can be obtained from Equation (2-20) by
assuming that the noise is white and passes through a filter having the form

2
N sin(:rtf ‘rd)
wel) =7 7T, | 2-37)

which is the transfer function for a boxcar averager with a time constant, 7,. The integral of this transfer
function introduces a normalization factor of 27, so that

F, (f)=21 (02 )
fn(f) d\"figure} ...
12/5 2 12/5 2
k2 k d 2 k d
2rhe} < |1+ -2 - 1 2(hck,) {14 -£ = | N2
k k r, ¢ k r ms
p c 0 c 0
ndl -t G nd?l )2
P e n sp Td
(rad? of phase / Hz) . (2-38)
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A Hartmann sensor can also be viewed as a tracking device in which a phase shift of 1 rad over a receiver
diameter D corresponds to a 1/kD angular displacement of the focal spot. Thus the noxsc spectrum for
tracking can be obtained from Equation (2-38) by converting the collection area to 5 D the wavenumber
to k,, the dwell time to T, the irradiance to /, and multiplying by ( l/ch)z

k 12/5 2 2
8 he 1+(-LJ (BJ 32 (hc)? 1+( J (2)
kc rO c rO)

F.(f)= 3 +
tn k,TID 1, ”2D6(Genlt) T,

(rad? of tilt / Hz) . (2-39)

An evaluation of all the individual error sources is now possible by combining the last six equations
and performing the integrations indicated in Equations (2-26) and (2-27). The noise terms are straight-
forward, because the integrals of the figure and tilt transfer functions are 1/37, and 1/37,,, respectively.
The turbulence integrals are somewhat more complicated, but are amenable to a few simplifying assump-
tions. For high-bandwidth figure compensation, accurate results are obtained by using the high-frequency
form of the figure spectrum over the entire frequency range, so that

4
ij(f)Ff(f)df 0.0326sec({)k ,,5/3[ (2nf1,)" +(2nf7,)* 2

., -83 4
s 1+(mfr) A2 g

= 2.80sec({)kZ vs;3 7 (rad? of phase) . (2-40)
Therefore, the figure error associated with the operation of the servo system is found to be

(02 gure ) =096z 7 /%)

12/5 2 12/5
k? k d 2 k
2mhel < |j14] -2 -5 2(hck) 1+| -2
k k I ¢ k
+

P
2 3
3nrydil, B(G nrddzlp)

(rad? of phase) . (2-41)

The total figure error is obtained by adding the deformable mirror fitting error [specified in Equa-
tion (2-25)] to this result.
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The computation of the turbulence-induced tilt error is performed by first recognizing that the high-
frequency roll-off in the tilt spectrum is sufficiently rapid to allow contributions beyond the low-fre-
quency cut-off to be ignored. In this range, the transfer function is proportional to the square of the
frequency. From Equations (2-33) and (2-36),

-1 _~l5_VS
0.445 07" o7\13 o}l

[T)R(f)df ~160sec(Q)vys  [@mfra) fPdf
0

0

=4.09sec(S)D oY vlps 13, (rad? of tilt) (2-42)

which leads to the following expression for the total single-axis tilt jitter:

(o3

~ -7/3,,8/15 715 2
ﬁh)sewo—-4.09sec(§)D / 7%,

Y.13%4/3

L )25 b 2 PR o\
8 he 1+(-’-] [—J 32 (he)? 1+[~L] (—] N2
kc rO kc rO
+ y + , .
3k nt, D%, 372 DG(Ge"de I:)
(rad? of tilt) . (2-43)

Equations (2-41) and (2-43) provide a reasonably complete and accurate description of the dynamic
characteristics of an adaptive-optics servo system.

24 WORKING DEFINITIONS OF ERROR VARIANCE, STREHL, AND IMAGING
RESOLUTION

Quantitative estimates of overall system performance are notoriously difficult to achieve, particu-
larly when the cumulative errors are large. The usual approach is to compute the phase error in the pupil
plane due to each source, then develop a total error by adding the variances

Crotal = Z"r’z : (2-44)

This will result in an over-estimate of the error unless the individual effects are statistically independent.

For laser-beam propagation, the quantity of interest is the Strehl ratio, which is defined as the
relationship between the measured on-axis intensity and the peak intensity of a diffraction-limited beam.
It is observed that when the rms pupil-plane phase distortion is much smaller than one wave, the width
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of the short-exposure beam will remain essentially unchanged but the peak energy will degrade exponen-
tially according to the expression

Strehl = exp(-—d'2 ) , (2-45)

which is known as the extended Maréchal approximation. The energy lost from the main beam will
appear as a set of diffraction-limited “speckles” that are randomly distributed over a region that is
inversely proportional to the turbulence coherence diameter. As the distortion level is increased, the main
beam will eventually become so depleted that it becomes indistinguishable from the rest of the speckle
field. In this regime it is more difficult to establish an unambiguous definition of Strehl, but the form
suggested by Yura [14] is probably appropriate;

T (2-46)
1+[Djp, |

Po is a characteristic coherence length that can be computed for either short or long exposures; for
uncorrected turbulence both of these quantities are approximately equal to r,.

Strehl =

No single strategy for specifying Strehl or sensor resolution is suitable for all situations. In many
cases, however, a reasonably accurate estimate of these quantities can be obtained by combining the
Streh] expressions given by Maréchal and Yura, under the assumption that the energy lost from the main
peak is distributed over a beam profile characterized by 4 /p,. The resulting beam profile for short
exposure would be

1—exp|~o2
(Sl = exp{-0f .. + 1+[z£/pgf]g 3 -

where the short-exposure coherence length, pstf‘. may also depend on O’gz-,gm. From this description of
the Strehl, a form for the composite system resolution is evolved that incorporates a weighted average

of the diffraction-limited resolution, 1.224,/D, and the resolution in the limit of large phase error,

—_—
2
(1.2210 /D)\f 1+ [D/ng] . The following expression is the rms of the product of the Streh] and the

resolution for the two limiting cases:

2
- )
[1 exp( Ofigure )]

3
1+ [D/ ng]
[Strehl)

exp(—Zo%l gum) + (2-48)

[Resolution]¢p = 1.22 A
esotuon = 1. —
SE D

An equivalent equation for the long-exposure Strehl can be developed by increasing the short-
exposure beam profile to reflect the addition of a single-axis tilt jitter (rads of angle) of Oy . Recognizing

23




that a Gaussian beam characterized by a standard deviation of 0.454 /D accurately reproduces the core
of the Airy function, it can be seen that

2 2
exp|—-o 1- exp(—or (2-49)
[Strehl]; & = ( ﬁgure) + igure )

2 2
1+4.94[1Q\1 o2 1+t

tilt
c

2
2
exp(—zo'fz.l o re) . [1 - exp(—O'ﬁgurc )}

2 LE?
1+4.94(—D—) o2 1+[D/pfE] , (2-50)
A tilt

5

Resolution]; ¢ = 1.22} —&
[ he D [Strehl]; ¢

where the tilt error for the large-phase error limit has been included in the long-exposure coherence
length, p&E. According to Yura {14], the long-exposure coherence length is approximately equal to r,;

Pt~ 1 (2-51)

and the short-exposure coherence length is always somewhat larger,
SE I3 (2-52
PRE =1, 1+0.37(r, /D) | - -52)

The application of this somewhat unorthodox approach to beam characterization can be demon-
strated in a short discussion of fitting error effects resulting from low-resolution phase conjugation.
Several investigators have claimed that near diffraction-limited resolution can be achieved with only a
few actuators [6], arguing that the long-exposure beam profile will always consist of a sharp central peak
surrounded by a diffuse background. This statement is valid as long as the tracking system can reliably
discriminate between the main lobe of the beam and the competing speckles in the short-exposure image.
Consider, for example, the two short-exposure profiles shown in Figure 12, which represent the output
of a ray-trace simulation incorporating a compensation system in which the ratio of the actuator spacing
to the turbulence coherence length was changed from 1.8 to 2.5. In the latter case, the transition out of
the Maréchal regime has begun; it is much more difficult to unambiguously locate and track the central
lobe. As indicated in Figure 13, the effective short-exposure beamwidth is clearly turbulence-dominated
as soon as the phase error exceeds 4 rad? (ds/r0=3.5). Note that the simulation results are in good
agreement with Equation (2-48).
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Figure 12. Comparison of short-exposure beam profiles near the transition to strong phase distortion. This
simulation was performed for an aperture diameter of 4 m and an rp of 16 cm. The upper figure represents a
dy/rg of 1.8, for which a Strehl of 0.2 was obtained. The lower figure corresponds to a dy/rg of 2.5 and a Strehl of
0.03. (The vertical scale for the lower figure has been multiplied by a factor of 5.)
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Figure 13. Comparison of the predicted short-exposure resolution with far-field beam-profile measurements de-
rived from a ray-trace simulation; Kolmogorov phase screens were compensated with a zonal-type adaptive element
having a variable actuator spacing. Each simulation result represents the average over 5 independent screens that
were each adjusted to produce an r, of 16 cm over a 4-m aperture.
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3. LASER GUIDE-STAR CONCEPTS

The efficacy of adaptive optics has been repeatedly demonstrated in laboratory and field experi-
ments conducted within the defense community over the last 15 years. At this point there is little doubt
that well-compensated images can be obtained with ground-based telescopes, provided hat the object is
bright enough to supply a few hundred photoelectrons to each subaperture per dwell time. For a nominal
set of conditions (a 16-cm subaperture, S-msec dwell time, and a 20 percent throughput), this corresponds
to an input flux of order 107 photons/m2-sec, which is roughly equivalent to a magnitude 7 object for
visible observations. This limitation would obviously exclude many objects of interest to astronomers.

The concept of using synthetic sources for turbulence sensing was first proposed to the high-
energy-laser beam-control community in 1982 [1]. Shortly thereafter, a classified program was initiated
to investigate the theory and implementation of adaptive-optics devices incorporating artificial beacons.
Lincoln Laboratory was one of several organizations involved in that effort and, to the best of our
knowledge, obtained the first experimental evidence of laser guide-star compensation in the summer of
1988 [4]. By the spring of 1991, Strehl ratios exceeding 0.3 were routinely obtained in the visible with
a 60-cm telescope and a 241-actuator adaptive-optics system. Figure 14 shows an example of pre- and
post-compensation data of the star Procyon. In this experiment the wavefront sensor was driven by a
beacon produced by a 512-nm dye laser, the return from waich was range-gated at 6 km.

Within the astronomy community, an independent research effort has been active since 1985 [2],
and in the last few years the literature on this subject has expanded considerably [23-31]. Although many
of the important system design considerations have already been discussed in these articles, the previous
treatments have been largely qualitative. This section will provide a quantitative treatment of the perfor-
mance limitations that arise from a variety of anisoplanatic effects.

3.1 FOCAL ANISOPLANATIC ERRORS PRODUCED BY A SINGLE ARTIFICIAL BEACON

Anisoplanatic errors will occur in any sampling geometry in which the measured turbulence path
does not coincide with the path followed by the image radiation. As indicated in Figure 15, light rays
originating from a distant source propagate along parallel lines to the receiver aperture. The measurement
of accumulated phase distortion afforded by a laser guide star is inherently imperfect as a result of
unsampled turbulence above the beacon and incorrectly sampled turbulence below the beacon. This form
of error is referred to as focal anisoplanatism, because it results from a difference in range between the
beacon and the celestial object.
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Figure 14. Short-exposure visible-wavelength images of Procyon taken in +ebruary 1991 wuii the 60-cm telescope
operated by Lincoln Laboratory at Maui. The upper picture is a I1-msec exposure taken with a CCD camera having
a 19-urad field of view. The lower image was collected a millisecond later after the phase distortion had been
corrected with a 241-actuator deformable mirror. A 512-nm synthetic probe placed at an altitude of 6 km was used
to measure the turbulence-induced phase distortion. The estimated Strehl ratios for the uncompensated and com-
pensated images are 0.05 and 0.4, respectively.
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Figure 15. Ilustration of the two major sources of phase error introduced by laser guide-star sources. The vertical
rays represent light originating from a distant source that accumulates phase error in traveling through the
atmosphere. The beacon rays follow slightly different paths to the receiver and are unable to sample the turbulence
above the beacon or to properly sample the turbulence below the beacon.

An analytic description of phase errors associated with anisoplanatic effects is most easily obtained
by developing the appropriate ensemble averages of the phase structure function in the pupil plane of the
receiver. An approach developed by Sasiela [32] icads to error-variance expressions having the following
general form:

ol = 0.207k3TC,%(z){ff(x)g(r?,z)dl?}dz , 3-1
0

where the 2z integration is performed over the slant range from the receiver to the object and the x
integration is taken over the entire two-dimensional space of the pupil plane. f (x) is the turbulence
spectrum, which, for most problems, is assumed to be the normalized Kolmogorov spectrum

=B (3-2)
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The turbulence-sensing geometry is characterized by the filter function. g(K,z), and will be unique to
each problem. As an example, consider the residual phase error for a system in which the aperture-
averaged tilt is removed. The filter function that eliminates the average phase (piston) and the x- and y-
tilt over an aperture of diameter D is

2 2
2J,(xD 2) 4J,(xD2)
g(K)ﬁgure=1_[ KD;Z :l —[ R

kD2 (3-3)
from which the following expression is obtained:
, .7 = 27 (kp2)V [44,(xD2)T
02 e = 1:30K2 [ C2(2)dz [ k83 1~[ 5 J -[ Y } dx
0 0 ' (3-4)

) 3
= 0.057sec({)k2 D3 = 0.134(Djr, )

The figure error associated with the uncorrected turbulence above the beacon is derived directly
from Equation (3-4) by setting the lower limit of the integral over z to the beacon altitude, H. If the n™
upper turbulence moment is defined to be

U (H)= [£" C2(R)dh (3-5)
H
the error due to the unsampled turbulence can be written as
Ohoper = 0.057DP k2 sec({)pg(H) (3-6)

The phase error below the beacon arises from the difference between the parallel rays traveling between
the scattering altitude and the ground and the rays originating from the beacon. In this case, the filter
function is somewhat more complicated and leads to the expression

oc H - ’
g J(kD(H - 2)/2H
Oppwer = 1.30k2 sec(é’)]dzC:(z)deK' 83 {2 1- lch(il— 7));;,1{ )]
0 0 e
[24(xD2) 24(xD(H=2)2H)T [44,(xD2) 4Jy(xD(H -2) 2H)T
xD,2 kD(H - 2)/2H xD/2 xD(H -z) 2H

(3-7)
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The solutxon is most easily expressed as a series expansion involving the low-altitude turbulence mo-
ments, /.l,,(H ). computed from ground level to the beacon. An accurate representation can be obtained

with the first two expansion terms

2

Otower = D" kc2 sec(£)30.500 ;15H3( )

3 13 (H)
0.452 —=——= e + (3-8)

Note that both the low- and high-altitude equations exhibit an explicit D°/° k> sec({) dependence that
is decoupled from the beacon altitude and turbulence profile dependencies contained in the expansion
series.

The predicted focal anisoplanatic error for visible imaging with a 4-m aperture is plotted as a
function of beacon altitude in Figure 16. A single beacon placed at 10 km should reduce the figure error
to about 3 rad?, which (based on the analysis of resolution shown earlier in Figure 13) is just within the
range in which a unique diffraction-limited central lobe would be formed. A 90-km source would yield
an image having a much higher signal-to-clutter ratio and would produce a Strehl ratio of approximately 0.6.
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Figure 16. Comparison of phase variance contributions due to turbulence lying above and below the synthetic
beacon. The shape of the low-altitude curve is complicated by the inclusion of a larger fraction of the atmosphere
as the beacon is raised.
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3.2 IMPLEMENTATION AND PERFORMANCE OF MJLTIPLE-BEACON SYSTEMS

The efficacy of systems employing a single synthetic beacon came into question fairly early in
Lincoln’s investigation of guide-star techniques and subsequently led to the development of a variety of
alternate beacon geometries. Because the figure error due to focal anisoplanatism has been shown to have
a D57 dependence, there is a potential benefit in deploying multiple beacons, each of which would be
devoted to correcting one section of the complete aperture. This concept is illustrated in Figure 17. If a

otal of N antificial sources were to be employed, the effective collecuon aperture for the residual

turbulence below the beacons would be reduced by a factor of N iz . so that

~§/6 Au53( ) '!(H)
Ofwer = N5 DYkl sec(£)10.500 == 0452‘“H . 39

Unfortunately, the practical implementation of this scheme is far from trivial, and the following
issues are noted.

1)  In order 10 mate the aperture sections to their respective beacons, a discrimination approach using
time delay, color, polarization, or field-of-view must be employed so that the signals from the wavefront
sensor can be correctly processed. If the beacons are launched sequentially in time, the entire pattern must
be generated within the atmospheric time constant.

2)  Because wavefiont sensors measure phase gradients rather than absolute phase. a means must be

developed to measure gradients across the seams between the aperture sections. To accomplish this

stitching” process, the detectors at the edges of the section scams must be capable of measuring the light
from both of the neighboring sources. If the beacons are launched in p-rallel, this may necessitate the
use of multiple sensors with overlapping fields-of-view.

20731917

Figure 17. Multiple-beacon sampling geometry. Focal anisoplanatism is reduced by positioning a beacon over the

center of each mirror section. “Stiching”™ errors occur when the relative source pasitions cannot be accurately
determined and result in low spatial-frequency figure distortions.
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The section-stitching issue has been studied at some length within the beam-control community. and there
is still considerable doubt as to the ability of multiple-beacon arrays to produce results that are signifi-
cantly better than those achievable with single-beacon systems. The basic problem arises from the need
to accurately fix the relative positions of the sources at the scattering layer. Figure 17 illustrates the ideal
geometry in which each of the beacons lies directly above the center of its respective section. If one of
the spots were to be laterally displaced within this pattern, however, all the subapertures within its section
would measure an anomalous tilt that would result in a low spatial-frequency distortion of the recon-
structed phase. Such displacements can be expected to occur as a result of imperfections in the beacon-
projection system; on a more fundamental level, fluctuations in position are unavoidable due to the the
fact that each beam is projected through a slightly different turbulence path. The use of overlapping
gradient measurements can reduce this effect, but there will always be a non-correctatle error component.

The uncorrectable part of the stitching error is best described in the context of a measurement
process that attempts to map the actual beacon positions by allowing each section to simultaneously view
every source. In the absence of turbulence, this mapping process would be error-free. When the atmo-
sphere is present, however, non-zero tilt measurements resulting from source displacements become
confused with turbulence-induced tilt differences.

A detailed evaluation of the multiple-beacon phase-reconstruction process shows that the net re-
sidual is related to the difference between the section tilts obtained from the arnificial beacon array and
the target object. To perform this calculation, the section-tilt variance due to focal anisoplanatism must
be determined and the cumulative effect of this error over an aperture having a large number of sections
must be estimated. The first of these calculations is performed by applying the filter function for aperture-
tilt to Equation (3-1). For a section having a diameter, D,, the appropriate filter function is

2
4J,(xD,/2
8(")mtpm=[—-2;c%/~2—)] , (3-10)

which leads to the following expansion for the tilt error due to turbulence below the beacon:

G2 = DY k2 sec(£)]0.368 2 ..
tilt phase = s K¢ SEC ) . H? i 3-1hH
An evaluation of the net error over the full aperture requires knowledge of the correlation statistics of
these fluctuations. (If the section-tilt errors were perfectly correlated, no high spatial-frequency distortions
would be produced and the figure error would be unaffected.) This correlation matrix has been evaluated,
and in Section B.3 of Appendix B the error propagator for a system having a large number of beacons
is shown to be approximately equal to 0.11(D/D,)*3. Therefore, the stitching component of the figure
error is

!
(H)
Gszu'tching =D K] SCC(C){O-O‘*OEZ},' 3 +} , (3-12)

33




which has the same D3 kf sec(¢ ) dependence found in the previous error-variance expressions and is
independent of the number of sections.

As suggested by Equation (3-9), it is possible in principle to reduce the low-altitude anisoplanatism
term to a negligible level by deploying a sufficient number of synthetic beacons. In the limiting case, the
major contributors to the total error would be upper-altitude anisoplanatism and section-stitching notse.
This result is shown in Figure 18, and in comparison with Figure 16 it can be seen that a significant error
reduction is predicted for all beacon altitudes. However, this improvement must be carefully balanced
against the increased complexity of the laser system, wavefront sensor, and phase reconstructor.

20731919
8 1 i | ELLERAN) I 1 IR
MODIFIED HY MODEL
D=4m
6 F A =0.55um -
C = 45°
-

ERROR VARIANCE (rad?)
F-S
|

N
1

0§Tn0H|NG
~----_______—_¢
0 1 soa s gl N

1 10 <00

GUIDE-STAR ALTITUDE (km)

T

Figure 18. Figure error expected for the combination of unsampled upper-uiiiinde turbulence and aperture-section
stitching with multiple beacons.

The practical implementation of the stitching concepts just described has been demonstrated by
Lincoln Laboratory in a four-beacon laboratory simulation performed in 1988 and in a two-beacon field
experiment in November 1990 [5]. In the latter experiment, a pair of pulsed dye lasers was used to
generate sources that were separated in time by approximately 1 msec and displaced laterally by half the
diameter of the aperture. In both of these tests, a small improvement in the far-field Strehl was recorded
when the muliple-veacon images were compared with the single-beacon results
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33 LONG-EXPOSURE TRACKING CONSIDERATIONS

All synthetic-beacon concepts suffer from a common deficiency—because the laser radiation fol-
lows the same turbulence path in both the transmit and backscatter directions, no information can be
gained about the probe position relative to the target object. Unless the error due to turbulence-induced
tilt jitter can be sensed and eliminated, the long-exposure image obtained with guide-star figure correction
will be no better than that produced by an uncompensated receiver.

For imaging engagements in which exposures much longer than the atmospheric time constant are
required, it will be necessary to stabilize the imaging system on an exoatmospheric fiducial object that
is within the isoplanatic angle for overall tilt. Recall that the standard definition for isoplanatic angle is

-3/5
6, ={2.91kczsec8/3(§)u5’,3} . (3-13)

which is based on the following description of the phase error resulting from two beam paths separated
by an angle &

2
(oﬁgure

53
- (75, @19

) beacon offset

Sasiela [32] has derived an expression for the error variance associated with overall tilt, where in this case
the aperture filter function is

8 [412(;:0/2

)T,
ch)z Y [2-245(x02)] ' (3-15)

g ( K, Z)till anisoplanatism = (

This expression represents the product of three terms: the first is a conversion from phase variance to
single-axis angular tilt, the second is the tilt filter function introduced in Equation (3-10), and the third
is the function for angular offset. The resulting error (in units of rad? of single-axis tilt) is approximately
given by

2
_ 0 sec({)
2 3 \2/
(O’ﬁlt)l con offser = sec({) D™ 534#5(’#)( ) ) +6.085(H. )} | (3-16)

where H, = D/ 6 sec({ ) is the altitude at which the two beam paths no longer overlap. The first term
of this series is usually adequate as long as H_is greater than 10 km.

Combining the first term of Equation (3-16) with Equation (2-50) yields the long-exposure reso-
lution for tilt anisoplanatism:

>
~——
+
S

2
A D
1 = < — 2 = £
[Resolution], 1.22( D) 1+4.94(/1 } (02 cacon offeet 1.22( =

Cc

3-17)
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where the isoplanatic angle for tilt is defined to be

_131-12
(80) 4y = {0.6681:3 sec’({)p, D ’/3} ) (3-18)

For a set of nominal system parameters (D = 4 m, A_= 0.55 um, and { = 45°) and the modified HV
turbulence model, (8;);, = 40 prad; this number is only a factor of 3.5 larger than 6, for these conditions.

A plot of the long-exposure resolution, developed from Equations (3-16) and (3-17), is given in
Figure 19. This curve displays a linear dependence on the separation angle when 6/(8),,,, is between 1
and 6, but for larger values of 8 an asymptotic limit is reached that is /2 larger than the single-beam
tilt jitter for uncompensated turbulence.

This research indicates that a guide-star compensation system must comprise two separate, and
equally essential, servo elements—a deformable mirror controlled by the laser beacon and a tracking
mirror slaved to a bright fiducial star. The probability of finding a suitable fiducial object within the tilt
isoplanatic angle will be addressed in the next section.
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function is approximately linear between 50 and 250 prad.
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4. OPTIMIZATION AND PERFORMANCE ANALYSIS FOR A 4-m SYSTEM

At this point, an optimized telescope design may be proposed and its performance characteristics
analyzed. To motivate the need for synthetic beacons, brightness requirements will also be developed for
celestial objects.

To simplify this analysis, a baseline system configuration will be used for all calculations that
follow. The list of parameters. given in Table 2, includes a 4-m aperture, a viewing angle of 45°, and
a common wavelength of 0.55 um for wavefront sensing, tracking, and imaging. The sensor character-
istics of an 80 percent quantum efficiency and 20 noise electrons are nominal for high-frame-rate CCD
camera systems.

Note also that a total throughput parameter, ¥ will appear in all of the error expressions in this
section so that the computed irradiance values can be referenced to the top of the atmosphere. Estimates
of throughput can vary greatly and will depend on the complexity of the collection system and the manner
in which the light is apportioned between the various sensors. For the purpose of this study a value of
20 percent will be used for both the phase sensor and tracking systems.

Unless otherwise stated, the parameters listed in Table 2 should be assumed for all numerical
results.

4.1 OPTIMIZATION OF SUBAPERTURE DIMENSION AND DWELL TIME

The three most important sources of error for conventional (nen-guide-star) adaptive-optics systems
have been shown to be fitting error, phase-sensor noise, and finite-bandwidth error. By combining Equa-
tions (2-25) and (2-41), the residual figure distortion for a system that senses wavefront phase at a
wavelength lp and images at wavelength A_ is obtained. Thus,

12/5 2
2 kp d 2
2 {hck ) 1+[k—) [70‘-] N2
53 5/3 c
2 =
(aﬁgure) - O'S(ds/'b) + 0'962(Td/70) 2
system 3 ( 1. d2 1 )
‘ g . Yp Nt a5 1,

fitting error finite bandwidth error Sensor noise ’

(rad? of phase) . (4-1)
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TABLE 2

Baseline System Parameters for Optimization Study

Aperture Diameter D=4m
Wavelength Ap=Ay= A, =055 pm
Zenith Angle § = 45°
Glar System Throughput L=h= 02
Detector Quantum Efficiency n=08
Detector Noise Level Nps = 20
=162 cm
6, = 11.5 prad
Turbulence Parameters 7o = 5.1 msec

(B = 40.3 prad

Ho = 2.65 X 10713m'3
Turbulence Moments Mg = 1.78 X 107 m?
4y = 3.96 X 1076m™

Uy = 1.40 X 107'3sec'®
Wind Velocity Moments Vg = 1.23 X 1071m2-sec™3

Vyan = 2.28 X 1077m5-sec’B

The optimization of the subaperture dimension and phase sensor dwell time is simplified if the third term
in Equation (4-1) is rewritten for the limit d»r,. A general treatment of this problem is given in Section
C.4 of Appendix C, and from Equation (C-20) it can be shown that the relative contributions of the three
error terms appearing in Equation (4-1) are -%, %, and %, respectively. For a specified figure-variance
design goal, the following set of system characteristics is developed:

3/5
= 2 L] (4'2)
d, [r, =0.811 [(aﬁgm )symm]

3 (4-3)

= 2
1,1, =0.548 [( Oigure )Sysm]

and
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1/2

12/5
339 hc KV kS N ( / /5
I, = ¢ _p ms 1+152) % (0Zgure)
Yo N1 [(szig“m)systcm] i

The last of these equations can be rewritten to show the explicit dependence on the number of phoicelec-
trons collected by each subaperture

(N”‘)phase sensor k, |7 110 L) . o)
= 7 Zc
N s - 7.68 [ kc } [(G%gum )system] 1+1.52 kp [( figure )sysmm]
(4-4)

These expressions indicate that d /7 and 7,/1, will typically be close to unity and that the number of
photoelectrons that must be collected by each subaperture per measurement interval will be on the order
of a few hundred. A plot of d_ and 7, as a function of the allowed figure error is given in Figure 20.

207318-20
30 L] L) R | ' 3 L ) L] l L ) T
_ L
E o -t 4
L -
x i =
w 20} j ]
l g
= 1% £
< o w
s | 1 Z
w . :
S 7 12 2
= 10} < w
5 i // D=4m 7 g
E | Ap=lc=0.55pm - 9
2 L _ 450 R
2 =45 )
o e 'l A I A L 1. l A i N o
0 1 2 3

FIGURE VARIANCE (rad?)

Figure 20. Optimization analysis of the phase-compensation system parameters as a function of figure variance.
A total throughput value of 20 percent has been assumed in this calculation.
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The tracking-sysfem dwell time can be optimized in a similar fashion, although in this case it will
be assumed that the bandwidth of the tilt sensor is low enough to permit photon-noise-limited operation.
From Equation (2-43),

2 ~12/5 ; 1/5

( O'é“) =0.202 ic_ Tar 8hc k 5 kfz (rad? of single-axis tilt), (4-5)
system (10)(1! 3 Y, Nty 15 DO,

3

(- V)
v

[ )

finite bandwidth error photon noise

where a critical time constant for tilt has been defined following the procedure used earlier to develop
the tilt isoplanatic angle:

12
2 8/15 7/15 ~13 . (4-6)
(o), = {05122 sec(g)o®5 73 D713}

When the dwell time 1s properly adjusted, *he relative contributions of the iwo error terms in Equation
(4-5) will be and 3, respectively. Thus,

(02,) vz
S 0,784| - Lsystem @)
(TO)ﬁu (0'61}"-/‘))

represents the optimal setting, where the jitter radius has been normalized to the half-width of the
diffraction-limited beam at the compensation wavelength. The tracker irradiance requirement is

—17/5 L5 ’ 4.8
1,=19.5 hek & )

3/2
! ’7( )ult ‘32 D3 [(Gtzm)syswm]

and at this level the detector will collect the following number of photoelectrons within a single measure-
ment cycle:

[4

-1
(N ) =171 ﬁ_ ” ,_l_)_ : (G‘Zil‘)system . (4-8"
P€)iracker | k % (O. 61 Ac / D).’Z

Once again the dwell time must be roughly matched to the atmospheric time constant if good performance
is to be achieved and the requisite photoelectron count is of the order of a few hundred.




42 PERFORMANCE EXPRESSIONS FOR THE OPTIMIZED SYSTEM DESIGN

By reformulating the optimization equations to express them in terms of source irradiance and
combining them with their respective error expressions, a compact set of variance relationships is ob-
tained;

( o?!surC)system ~2.05(h C)IO/I’I kc-zm k;zm ( N_ /Yp nt, ’02 Ip)lo-n
(rad? of phase) , (4-9)
and
( Gtzilt) = 7.25(hc)?/3 k-3 1415 (y n (To) | )—2/3 43 p2
system < ! ! tile ! 0
(rad? of single-axis tilt) . (4-10)

Quantitative estimates of the long-exposure Strehl and resolution follow from Equations (2-49) and
(2-50), which can be simplified if the system is assumed to operate in the range in which the extended
Maréchal approximation is valid (Ofigure< 3 rad?), with the result

exp(-Ohgure)

[Strehl]; ;. = 3 (2-49")
144,94 2 o2
and Ac
A DY
[Resolution]; zl.22(—§) 1+4.94(—/1—) oﬁ,‘ . (2-50)
[

A plot of these functions for ]P= 1, is given in Figure 21. The equivalent stellar magnitude is also given
for wideband sensing in the visible, where the relationship

m_ =~2.5log(l)-21.2 (4-11)

has been applied.
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Figure 21. Performance analysis of the optimized figure- and tilt-compensation systems as a function of irradiance
(referenced 1o the top of the atmosphere). A total throughput value of 20 percent has been assumed for both systems.

43 SKY-COVERAGE CALCULATIONS FOR NATURAL SOURCES

The conclusion that can be drawn from Figure 21 is that phase compensation at visible wavelengths
requires relatively bright objscts (m < 9), whereas high-precision tracking can be performed with stars
much dimmer than 16th magnitude. In this context the advantage of guide-star compensation becomes
obvious, as a natural source is only required to close the tracking loop. In order to quantify the expected
improvement, it will be useful to obtain estimates of the fraction of the sky that can be covered with
natural and synthetic beacons. The fractional sky coverage is defined to be

Fractional Sky Coverage = 7 9% x Average Star Density , (4-12)

where 9 represents a radius that can be drawn around each bright star within which the error due to tilt
anisoplanatism will be tolerable according to some set of system performance goals.

Star density computations have been performed based on information extracted from the Infrared
Handbook [33], which gives average population estimates as well as numbers for the galactic pole and
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equator. The resulting density curves as a function of visual magnitude are given in Figure 22. For
computational purpc.=s it will be convenient to replace these curves with analytical functions; the fol-
lowing expressions provide an excellent fit for visual magnitudes less than 20:

Average Density = 1.45 exp(0.96 m,)  (stars/rad?) , (4-13)
Density at Pole = 1.27 X 10#m}? (stars/rad?) , (4-14)
and
Density at Equator = 3.97 exp(m,) (starsfrad?) . (4-15)
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Figure 22. Comparison of stellar densities for the galactic pole, the galactic equator, and the average density as
a function of visual magnitude.

Equations (4-11) and (4-13) can be combined to produce a first-order estimate of the average density as
a function of irradiance:

Average Density = 2.02x10~9 J-104 (stars/rad?) . (4-16)

The area of coverage afforded by each bright star depends on the level of error due to tilt
anisoplanatism that can be tolerated. From Equations (3-13) and (3-14) it can be seen that to maintain
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a specified figure error of (szigum) , the angular displacement from the beacon must be less

than

beacon offset

3/5
_ ) ' 4-17)
19ﬁgure [( Gﬁg““’ ) beacon offset] 60

This equation is applicable when natural stars are used as the light source for both figure and tilt
compensation. When a synthetic beacon is used to drive the wavefront sensor, the fiducial star must be
close enough to the target object to sustain a tilt jitter of less than ( . From Equations
(3-16) and (3-18),

ult beacon offset

1/2
=136 (Ggl‘)bcacon offset (90 )mt )

T (0612, /D)

(4-18)
14

44 LASER REQUIREMENTS FOR GUIDE-STAR COMPENSATION

The final component of this discussion is an estimate of the power required to generate a laser guide
star. The expressions for atmospheric backscatter are well known, and good tutorials on this subject can
be found in texts by Hinkley [34] and Measures [35].

In Figure 16 strong evidence is presented for the use of sodium beacons to achieve high-quality
phase compensation at visible wavelengths. To fully exploit resonance emission, however, the laser line
width must be well matched to the D, absorption line (~3 CHz), and saturation effects resulting from the
long natural decay time of the excited state (~16 nsec) must be avoided. The second of these parameters
results in a limit of about 30 kW/m? on the peak-power density of the projected beam [30].

Saturation can be reduced by either increasing the length of the laser pulse or the size of the laser
spot within the scattering region. In Lincoln’s theoretical studies, virtually no degradation of the quality
of the phase measurement was found as long as the projected beam was smaller than the aperture
diameter (or the section diameter for a multiple-beacon system). To avoid any degradation of the phase
sensor’s sensitivity, however, the beacon must not be so large that it becomes resolved by a subaperture.
For most scenarios of interest, this latter restriction will establish the practical upper limit on the laser-
spot diameter.

Assuming a laser pulse width of 200 psec and a 50-cm beacon diameter, the limit on the pulse
energy would be approximately 1 J. This number is slightly greater than the energy requirement that is
derived below for CW operation in the visible; therefore, saturation effects can be negiected for most
first-order calculations.

For quasi-CW operation using a high rep-rate beacon laser, the backscattered irradiance from
sodium layer measured at the entrance to the wavefront sensor is predicted to be

| - p, YeGldo(n)/a0]
P [se:c(C)HS]2 ’

4-19)




where

I = average irradiance at the wavefront sensor (W/m?),

P, = average laser power (W),

Ye = throughput of the laser beam to the scattering layer = 0.2,
¢ = zenith angle = 45°,

H_= sodium layer altitude = 9 X 10* m,

C, = sodium column abundance = 5 X 10'> atoms/m*®, and

do(n)/d§2

#l

scattering cross-section = 6.6 X 10~!7 mZ/sr.

The combination of Equations (4-4) and (4-19) produces an expression for the average nower required
for CW phase compensation;

LI 12/ a2
3.39[sec(¢) H, | hekZ 5 k85w ¢ VP 65
P, = s ¢ p s 141.52] < (02 )
¢ E7T Ry fgure ) ciem
2 2 P
eV, M7 C, [da(n)/da]’;(cﬁgm )syswm:j )
4-20)

A plot of the average laser power and pulse repetition rate as a function of the allowable figure variance
is given in Figure 23. A total two-way throughput of 4 percent was assumed in the development of these
Jaser requirements.
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Figure 23. Beacon-ilaser specifications for resonance backscatter from the earth’s sodium layer. A two-way
throughput of 4 percent has been assumed in this calculation.

The development of sodium-frequency lasers has been active at Lincoln Laboratory for several
years. The most recent efforts have focused on a solid-state design based on the sum-frequency mixing
of two diode-pumped Nd:YAG lasers operating at 1.064 um and 1.319 pum [36]. A 24-mJ 840-Hz laser
was constructed in 1990, and it is predicted that this same technology could be used to build a device
capable of generating several hundred watts of average power.

4.5 PERFORMANCE COMPARISONS FOR NATURAL-STAR AND LASER GUIDE-STAR
SYSTEMS

All of the relationships crucial to the design of natural-star and synthetic-beacon adaptive-optics
systems have now been assembled. A comparative evaluation of these two compensation approaches is
most easily accomplished through a calculation of the achievable long-exposure Strehls. Recall that the
Strehl for uncompensated turbulence is

1

Strehl], . = —————-
[ tre ]LE ]+[D/'b]2

(a-21)
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A modest improvement to this number can be realized by incorporating a tracking system to remove the
tilt component of turbulence, thus achieving an on-axis irradiance similar to the short-exposure Strehl.
From Yura [14],

pSE = ro{l +0.37(r,/D)" 3] ; (4-22)

thus, for the aperture diameter and wavelengths of interest this relationship predicts a Strehl improvement
of approximately 50 percent. To obtain more substantial gains, the high spatial frequency components
must also be corrected. As discussed in Section 2.4, the long-exposure beam profile that resuits from
partial phase compensation is predicted to have a residual background of width A/r, and a diffraction-
limited central core that is smeared as a result of tilt jitter. If the ratio between the uncorrected back-
ground and the central core is large, the Strehl ratio can be approximated by the following expression:

2 2
expi—(0Fque ). +(o +(0feure)
p{ [ figure system ( ﬁgure)focus anisoplanatism figure beacon offset (4-23)

2
D
1+ 4'94(}:) [(Gﬁh)syswm + (Glzm )bcacon offse!]

For natural beacons, the focus-anisoplanatism term in the numerator will be zero; in addition, tracking
errors in the denominator can be ignored, as the constraints imposed by the wavefront sensor require a
very bright reference having a small angular displacement. The beacon-offset term in the numerator will
be zero for synthetic-beacon systems.

[Strehl]; . =

The strategy at this point will be to develop a balanced error budget based on Equation (4-23). In
keeping with the relatively modest goals that are currently being discussed within the astronomy com-
munity, a set of design criteria will be used that results in a factor-of-10 ratio between the central core
of the beam profile and the background and which limits the width of the central core to twice the
diffraction limit. The corrected and uncorrected point-spread functions are compared in Figure 24 for
imaging at 0.55 um.
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Figure 24. Comparison of the corrected and uncorrected beam profiles for a design criteria that restricts the tilt
Jitter to twice the diffraction-limited beam diameter and achieves a signal-to-background ratio of 10. This plot
represents the point-spread function comparison for operation at 0.55 um.

The final results of the analysis of a 4-m compensated-imaging system are summarized in Table 3.
A total of six configurations are included, and the error budget for each can be found in the uppermost
section of this chart. The corresponding component specifications are given in the next four rows, which
show the required number of actuators, servo bandwidth, average laser power, and beacon brightness. It
is not surprising that in each case the actuator spacing is closely matched to turbulence coherence length
and that the servo bandwidth (defined as 1/107)) is approximately equal to the Greenwood frequency.
With the exception of the requirement on the laser output, all of the numbers listed are well within the
current state of the art.

The bottom section of Table 3 contains a quantitative comparison of the long-exposure Strehl and
resolution, as defined by Equations (2-49) and (2-50). In each case a substantial improvement in the
effective seeing and image iuiensity is achieved. The motivation for pursuing synthetic-beacon constructs
is clearly indicated in the comparison of operational utility listed in the last row of this summary. As a
result of a lower irradiance requirement for full-aperture tracking (corresponding to 6 visual magnitudes)
and a larger isoplanatic angle (by a factor of 3.5), the probability of finding a reference star for tilt
stabilization in the visible is over 3 orders of magnitude greater than the likelihood of finding a beacon
source for phase compensation. Although the absolute utility at 0.55 pm is only a fraction of a percent,
because this number scales roughly as ror%e%. a slightly more benign turbulence model would result in
a greatly improved estimate,

48




In closing, the system designer need not be constrained to precisely tailor the adaptive-optics
equipment to the expected turbulence conditions or the correction wavelength. Through the use of inter-
changeable reconstruction operators and adjustable timing circuitry, it is always possible to modify both
the effective actuator density and servo bandwidth to achieve maximum effectiveness. Thus, the short-
wavelength capability of the system can steadily evolve as component technology improves without
suffering a loss of performance in the infrared.

TABLE 3

Summary of Compensation-System Design Specifications and Operational Utility for a
Factor-of-5 Improvement in the Long-Exposure Strehl for a 4-m Telescope

Naturai-Star System Laser Guide-Star System

V Band | J Band { K Band V Band J Band K Band

0.55 um}1.25 um] 2.2 uym 0.55 um | 1.25 uym 2.2 ym
Ofyure  (rad® of phase) 42 24 1.3 29 1.2 0.49
o2, (rad? of tilt) 0 0 0 1.2x107%4 | 5.9x 10714} 1.8x10°13
Number of Actuators 290 85 45 250 90 65
Servo Bandwidth, 1/1014 (H2) 23 12 9 21 12 11
Sodium-Beacon Laser Power (W) — — — 47 9 6
Beacon/Fiducial-Star Magnitude 8 10 11 13 16 18
Uncorrected Strehl 0.0016 | 0.012 0.044 0.0016 0.012 0.044
Corrected Strehl 0.016 0.1 0.32 0.015 0.082 0.17
Uncorrected Resolution (X 1.22A/D) 25 9.2 4.8 25 9.2 48
Corrected Resolution (x1.220/D) 26 1.3 1.0 3.1 2.0 2.0
Fractional Sky Coverage 3x10%]7x10"° } 3x 10 0.003 0.2 1
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5. CONCLUSIONS

The analytical relationships developed in this optimization study are generally consistent with
empirical design rules that have evolved over nearly three decades of research in the field of high-energy
laser-beam control. For imaging applications, the requirements for phase correction can be relaxed some-
what, but to achieve a significant improvement in the short-exposure beam profile, the actuator spacing
and correction bandwidth of an adaptive-optics system must be closely matched to the corresponding
turbulence parameters.

At this point there is little doubt as to the applicability of adaptive optics to the field of astronomy.
Experiments conducted by researchers at Lincoln Laboratory and other facilities have conclusively dem-
onstrated the efficacy of both the wavefront-compensation technology and the laser guide-star concept.
Much still needs to be done, however, before adaptive-optics technology is widely accepted as a tool for
astronomical research. Effectively adapting this technology to astronomical telescopes will require an
emphasis on reducing overall system complexity and cost while maintaining component reliability. The
first step in this process is to establish acceptable criteria for performance, upon which a suitable balance
between capability and design sophistication can be achieved. This issue has been the principal motiva-
tion in the analysis just presented.

51




APPENDIX A—AN ANALYTICAL TREATMENT OF TURBULENCE
EFFECTS

Quantitative estimates of turbulence effects have traditionally been difficult to obtain because their
analytic treatment involves complex integrals and fractional powers of the integration variable. As a
result, most investigators have resorted to numerical integration techniques or Monte Carlo methods that
use a large ensemble of individual turbulence realizations. Although these approaches give accurate
results, parametric investigations are difficult and the underlying physics is often lost.

The general philosophy of the Lincoln approach is that far-field characteristics (such as Streh] and
resolution) can be derived from residual phase error as measured in the pupil plane of the telescope. If
an adaptive-optics system is used, residual phase error refers to the difference between the actual phase
and the phase correction applied by the deformable mirror. These differences can arise from insufficient
temporal or spatial resolution in the compensation system or differences between the beampath of the
turbulence beacon and the object under investigation. All these effects can be studied using the approach
described in this report.

Al STATISTICAL DESCRIPTION OF THE PUPIL-PLANE ELECTRIC FIELD

For imaging applications, the ultimate interest lies in the point-spread function of the collection
system in the focal plane, but for turbulence calculations this quantity is most easily inferred from the
residual phase error in the plane of the receiver aperture. Although amplitude fluctuations play a role in
the distortion process, to a good approximation the far-field error can be accounted for by the average
phase variance, 0‘3, of the electric field in the pupil plane of the telescope.

A.1.1 The Rytov Approximation

The general form of the wave equation for propagation through turbulence cannot be solved in
closed form, but through the judicious application of approximations an approximate form can be devel-
oped that is amenable to solution. The usual starting point is a form introduced by Tatarski [37] that
expresses the electric field as a function of the three-dimensional position vector, 7, and time, 1, in the
presence of turbulence:

E(F.1)=E" exp[il?o F- ia)t] explx(F.1)+ i¢(?,t)] (A-1)
Eq E ’
where E, = unperturbed radiation,

E, = perturbation component,
EY?2 = average irradiance,

@ = temporal frequency of the electromagnetic field,
1;0 = wave vector of magnitude 27/4, and
A

= wavelength of light.
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The real parameters X(7.1) and ¢(7.?) define the log-amplitude and phase components of a multiplica-
tive perturbation that is introduced when light is diffracted as a result of changes in the index of refraction
along the propagation path. This form, known as the Rytoy approximation, is valid as long as the
perturbation is small. From Equation (A-1) it follows that

x+ip= ln(l+?) —Z:—'— (A-2)
0 0

1t will be assumed that y and ¢ are statistically independent random variables having Gaussian probability
distributions and zero mean.

A detailed derivation of the perturbation equation can be found in several excellent texts [38];
therefore, only a brief outline of the standard treatment of this problem will be given. As indicated in
Figure A-1, light passing through a wurbulent medium is assumed to diffract from a set of phase sheets
aligned in planes perpendicular to the propagation axis. If the z axis is taken as the propagation direction
and the effect in the plane of the origin of the coordinate system at time ¢ = 0 is measured, the perturbation
component of the electric field can be obtained directly from the equation for Fresnel diffraction:

(x=x +(y-y)’]
27

2 o oo [
Ey(ey0)= 22 [ e [ ay [ exp -it ool (2 VBl Y' )
o0 -0 0

(A-3)

20719-25

e iy

n,(x\y'z)

W

Figure A-1. Propagation of light through a single phase screen at range 2 to an aperture of diameter D ~sntered
at the origin of the coordinate system.
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The function ny(x’,y",2’) represents the perturbation component of the refractive index, and the volume
integration is performed over the entire space between the origin and the source. By combining this
expression with Equations (A-1) and (A-2), the following pair of equations is obtained:

o0 00 o0 ’2 12
AP IR R L G A d i
x(x,y,O)—-z—”!;dz —de :[‘dy Z,cos 2 n(x’,y,2') (A-4)
and
R e 1 [k[e-xP -]
¢(x,y,0)—-2-;£dz -J;dx _J;dy ;—;sm . 2 Lom(x,y,27) . (A-5)

The integrals over x” and y’ are recognized as the convolution of a filter function with the random
variable n,. For a linear transformation of this form, the power spectral density of the output variable is
equal to the product of the squared modulus of the transfer function of the filter and the spectral density
function of the input variable. The wtransfer functions of the filter expressions are obtained from their
Fourier transforms

2

a [kalx? + 42 2, 2

F K cos, ko(x +y) = k3 sin® ——————-——(xx K‘V)z’ (A-6)

2r7 l_ 27 2k,
and
2

2 x% +y? K2+ K2

F 21;0 -sin ko( > 4 ) = k2 cos? ———————( x2k0 y)z' ' (A-7)
z 2

55




where K, =27/x and K, =27/y are the spatial wavenumbers. From this result the power spectral
density functions of y and ¢ are seen to be

—’-‘-2—k;—-¥—z'] D, ( Ky xy;z') (A-8)

and

- 2, 2
cb¢(x,, xy) =k j dz cosz(mz’] dl,,(x,, xy;z') . (A-9)
0 2k

Notice that the spectral density function, @, {x,, xy;z’), that appears in the last two equations is only
defined within the i, K, plane in x space. The z parameter is explicitly included in the varable list
because the strength of the refractive index fluctuations are typically dependent on position along the
propagation path.

A.1.2 Three-Dimensicnial Spcetral Density Function Normalization

At this point in the derivation it becomes necessary to develop a relationship between the two-
dimensional spectral density function and its three-dimensional form, (pn(x-x, Ky Ky3 z'), in which the
refractive-index spectral density is typically presented. In this representation it is assumed that turbulence
is constant locally, and its average properties change slowly in the propagation direction. This is accom-
plished by taking a careful look at the manner in which the z integral is performed and the effect of
correlation along the z axis.

When z-axis correlation effects are included in Equations (A-4) and (A-5), the power spectral
density of an output variable, @, is properly written as the convolution of the filter function,
* -
Fa(xx, K‘y;z') Fa(x'z, x'y;z”), with the cross-spectral density function, d),,(xx, Ky 7, z") , of the refrac-
tive index

B KoKy ) = [d2 [d2” Fyi, k32 oK K327) B4, 6032027) . (A-10)
0o 0

By making the variable substitutions z = (2 +2”)/2 and Az =7’ —z”, this expression can be rewritten

Py, %)= szjdAzFa(xx,xy;z+ A22)Fy(X, K32~ A2/2) B, (k. x,342.2)
0 -z

='-Idzlpa(xx'xy;Z)Iz‘szzén(quxy;AZ!Z) ' A
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where the interchange of the order of integration and the modification of integration limits is possible
because the correlation length of @, is short with respect to functional changes with respect to z. This
equation is similar in form to Equations (A-8) and (A-9), and the cross-spectral density integral,

JdA z @"(xx, KAz, Z)* is seen to be equivalent to the two-dimensional spectral density function. The

desired result is obtained by noting that @, and @, are Fourier-transform pairs with respect to Az, so

that

7[(5,,(xx,xy;Az,z)]=El— JdAZ‘i’n('fx»Ky;Az,z)cos(Azxz)=di,,(xx,rcy, z;;)
"o : (A-12)
and

d>,,(xx,xy;z)= IdAz d),,(xx,xy;Az,z)= 27rd>n(xx,xy,0;z) ) (A-13)
From Equation (A-13) it can be seen that the expressions for log-amplitude and phase can be rewritten

in a form that is compatible with a three-dimensional refractive-index spectrum by inserting the multi-
plicative constant 27

5 2, .2
@z(x'x,xy)=27zk§J‘dzsinz(ff—ﬁz-zlfb,,(rx,xyﬁ;z) (A-14)
0 Zko
and
o 2., .2
¢¢("x*"y)=2”kg _“dz COSZ(%Z]‘%(Q'KWO;Z) . (A-15)
0

A.1.3 The Kolmogorov Turbulence Spectrum

The power spectral density function of the index of refraction can be derived from well-established
physical laws relating to the turbulent flow of air. For spatial frequencies within a region known as the
inertial subrange, Kolmogorov [7} showed that the structure function is proportional to the 2/3 power of
the scalar distance. From Kolmogorov’s observation, it follows that

@,(k,2)=0.033C2(z)x'? | (A-16)

yt K‘f, and C,% (z) is the strength of the turbulence fluctuations along the propaga-
tion path. As shown in Figure A-2, at large spatial frequencies the spectrurn decays more rapidly than
predicted by Equation (A-16) due to the dissipation of small eddies by viscous forces. Furthermore, at
small spatial frequencies the function does not become infinite but approaches a constant value. A more
precise representation is given by the von Karmién spectrum

2 2
where K™ =K, + x2
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Figure A-2. The von Kdrmdn turbulence spectrum. The Kolmogorov spectrum is valid within the inertial subrange.

_ 0.033C3(z ~x?
D, (K.2) = (e 2)51,)6 exp( 2 J , (A-17)
K°+x, i

where L, = 27/x, represents the outer scale of the inertial subrange and X; is related to the inner scale.
This particular form for the inner scale effect was suggested by Tatarski; other models, such as the Hill
spectrum [39,40], can also be used. For most ground-to-spac= applications, however, sufficient accuracy
is achieved with the simpler Kolmogorov spectrum.

A.1l4 Log-Amplitude Variance and Phase Variance of Uncorrected Turbulence

By combining Equations (A-14), (A-15), and (A-16), expressions for the net variance of the pupil-
plane phase and log amplitude fluctuations due to turbulence are obtained;

o ) oo 2
2 2 2 113 .2 K2 .
o, =0.207k £dz-‘[‘dxx:[odxy C;(z)x™ sin [m) (A-18)

oo 2
Ky J dx, Ciz)x7113 cosz(—z’f—kf] ' (A-19)
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where x?2 = xf + ;(5 (In all subsequent calculations the x-space integration will be confined to the x, X,
plane.) These two equations represent the standard representation of the total variance due to uncorrected
turbulence. The following section will show how this formalism can be extended to address a much
broader range of turbulence problems.

A.2 A GENERALIZED APPROACH TO TURBULENCE CALCULATIONS

The essential contribution of this work derives from two important observations. The first discovery
is that a wide variety of turbulence-related problems can be treated analytically by inserting an appro-
priate multiplicative filter function, F1 ( E’;z), into Equations (A-18) and (A-19). When a single beam is
involved, the general expression for phase variance has the form

oy =0.207k§jdzC3(z)_[dt?x‘“/3 F(i;z2) i (A-20)
0

where the approximation cos%(x) = 1 can be made for most problems in which the wave propagates from
space to ground without introducing significant error.

The integrand of the triple integral indicated in the previous expression will usually have a very
complicated structure that includes fractional powers of x and Bessel functions of x and z. Our second
observation is that the K integration car be treated as a Mellin transform, tables of which can be found
in standard mathematical handbooks [41]. The Mellin transform of g(x) is defined as

G(s)=M[g(x)]= [dxx" g(x) . (A-21)
0

Thus an integral over x that contains the term x 7 is equal to the Mellin transform of the remaining
integrand evaluated for s = p+1;

Jax kP g(x)=G(s)|_,,,, . (A-22)
0

The application of these computational techniques is best illustrated by a few simple examples. For
simplicity, only the phase component of the electric field will be explicitly treated in the next section.
However, the extension of these methods to calculations involving the log-amplitude component is
straightforward.

A.2.1 Zernike Components of the Phase Variance

The Zemnike modes of a circular aperture are incorporated in virtually all calculations of turbulence
distortion. The expression for the variance of the i Zernike component of the phase function over an
aperture of diameter D is
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2 D2 2
{"4’}; =| [ d6 [dppz(p.6)¢(p.6)] | (A-23)
Q 0

where Z,-(p,ﬂ) is the i%h Zernike polynomial. Because the statistical properties of the phase are defined
by its power spectral density function, this integral is more easily evaluated in the Fourier domain. Fourier
transforms of the Zernike polynomials evaluated for an aperture radius of unity are found in Noll [42]:

2 1

Qi(k.9) =% J dGJdPPZ.-(p, G)eXP(-Zﬂi k -5) . (A-24)
0 0

These functions can be adapted to the notation used in this report by making the transformation
k = kDA4x, so that

o0

L 2n
{042’}.- =0.207k3 [dzCi(2) [ do[ acx™|Q(xD/4n,9) P (A-25)
0 0 0

As these components are orthogonal, the phase variances associated with different Zernike modes will
add incoherently.

Piston-Removed Phase Error for Uncorrected Turbulence, The Kolmogorov spectrum is not only
infinite at the origin, its total phase variance is also infinite. This result is non-physical and can be
remedied by applying a finite outer scale; however, the more appropriate approach is to recognize that
an average phase shift over the collection aperture will produce no net distortion in the far field and
should therefore be ignored. The aperture-average phase is referred to as “piston” by the adaptive-optics
community, and its value is derived from the product of the first Zernike polynomial and the pupil-plane
phase. The filter function for piston removal over an aperture of diameter D is found to be

F(R)=1-|0/(x D/4m) =1_[2_{1(_"ﬂ2_)]

kD)2 (A-26)
The x integration specified by Equation (A-20) is performed in the following manner:
_ 24,(xD/2) T = 24,(xD2)T
| R e e B L I e B e e
. kD)2 kD2
x 0
oo ‘ ; 2
= 5-2—”-] acx 3 (KDY o p )
D* 4
2 |
32r | (xD/2) 2
= DZ M[ 2 —JI(K'D/2) (A~27)
s=-11/3
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The last expression is similar in form to a Mellin transform given in Appendix B:

2 , o
2 X 1 r{l+s:2]r[12—s.2]
M[l‘ (x) 4}"2{5 M2-s2]rMi-s2] - (A-28)

By applying the transform identities

M{-g(x)]= ~M{g(x)] and M[g(ax)]=a"* M[g(x)] (A-29)

the following relationship is obtained:

327, | (xD/2)? -Jz(KD/2\]~ ) _3;_;5(2)’ ¥ 1 r-s6)ri46]
D? : T D*\2) 27 Ij32:6]r17 6]
S/3
=2.11D7° . (A-30)
Combining this expression with Equation (A-20) yields
0, =0.437k5 D [dzC2 () (A-31)
0

The final integration over z cannot be completed without specifying the turbulence profile; how-
ever, this calculation is easily performed for the standard turbulence models. 1t is common to characterize
a urbulence modcl! by its moments U, = | dhh" C,f (h), which are computed at zenith. For an arhitrary
zenith angle, z,

jdzz" Ci(z)= sec’”'({)jdh K" CH(h)=sec™ (O, . (A-32)
0 0
With the application of thic identity,

65 =0437k3 D ?sec({)uy (A-33)

which is the standard result. Although this particular expression can be easily obtained without the use
of Mellin transforms, the benefit o this approach becomes obvious when more complicated filter func-
tions are involved.

Figure and Tilt Calculations for Uncerrccted Turbulence. Most adaptive-optics systems incorpo-
rate separate devices for tracking and high-spatial-frequency compensation; a typical corfiguration is
shown in Figure A-3. For this reason it is convenient to develop individual expressions for each of these
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turbulence components. The filter function for tilt is derived from the Fourier transforms of the second
and third Zernike polynomials;

Fan(X) = le('fD/"'”)l2 +1Q3("D/4”)¥2

2 27 2
4J,(xD/2) 4J,(xD/2) . 4J,(xD2)
=] —F——= 6 + | —— 6 = | S -

[( D2 oo )J ( D2 o) kD2 |+ A3

and the associated Mellin transform is

2, . 1 I2+s2]H{1y2-s5/72)
M| 3] < 2vm IM3-s2)M1-52]

(A-35)

The 1ilt component of turbulence is usualy given in units of rad® of single-axis tilt angle, and the
conversion from rms phase to rms angle involves the multiplicative constant S/(kODF. Combining this
constant with Equation (A-35) and the variable change indicated in Equation (A-29) results in

O'tzm =3.04D7"" sec({)pty (rad? of single-axis tilt) . (A-36)
The piston- and tilt-removed phase, also known as “figure,” represents the high-spatial-frequency

turbulence that must be corrected by the deformable mirror. The filter function for figure variance is the
difference between Equations (A-26) and (A-34);

2 15y 12
2J,{(xD/2 4J,(xD;2
et 1-[PAEDT [a1:00)
By applying the identity
Mg1(x) + g2(x)] = Mg (x)]+ Mgx ()] (A-38)

the following result is obtained:

M[(Jf(x)—f‘;)wfg(x)} 1_Mi+s2]r{y2-s/2) 2 I2+s52]1{12-572]

N M2-sp2]Mi-s2] <z I3-s2]Mi-52] -(A-39)
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Figure A-3. Schematic presentation of a closed-loop adaptive-optics system. The first derivative of the phase
difference between the incoming wavefront and the surface figure imposed by the tilt and deformable mirrors is
measured by the phase sensor. The residual phase error is computed by the reconstructor and subsequently applied
to the two active optical elements.

The final expression for figure variance is derived by following the steps outlined in the previous
examples:

oo 2
32 xD/2
Ohgure = 0.207k3 j dzC(z) (—-—Df ) M|| JE(xDy2) - (kD72) " ) +4J3(xD/2)
0 s=-11/3
- 2 1S53
=0.0567k3 D sec({)uy - (A-40)
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A.2.2 Phase Variance due to Anisoplanatic Effects

Most problems of interest for compensated-imaging applications involve a pair of beams, one
which originates from the beacon that is viewed by the wavefront sensor and a second that passes through
the correction system and is imaged onto the focal plane. Anisoplanatic effects occur whenever these two
beams follow different paths through the atmosphere. Figure A-4 shows a simple geometry in which the
rays impinging on a point in the pupil plane of the receiver pass through points in a single phase screen
that differ by the vector displacement d . If an adaptive-optics system is used to apply a correction based
on the beacon information, the magnitude of the resulting error at point p will be proportional to

ln, (B:2)~m(p+d(B;2):2) !2

where it is noted that d will be a function of both aperture position and the range to the phase screen.
In x space this displacement corresponds to a phase shift of K-d, so that the corresponding error
expression would be

ll exv[ %-d(p;2) ” | #[m(p:2) ]l =2{ — cos(k -d(p; ))} W(Ki2) . (A-4D)

The term 2[1 - cos(x-d(p;z))] can be viewed as a filter function associated with the displacement of
the two rays. To obtain a function representative of the aperture-average error, the following integral must
be performed:

4 2r D2 -
F(k;z)= 7 jdG jdpp[Z 2cos -d(p,9;z))], (A-42)

For some viewing geometries it may be possible to develop the filter function ass ~iated with a
single component of an anisoplanatic effect by taking the product of Equation (A-42) and ti.c appropriate
Zernike-function filter. For the more general case illustrated in Figure A-S, however, the problem in-
volves two beams that may have different diameters, intensity distributions, spatial offsets, and may
originate from sources placed at different altitudes. The pupil-plane error variance results from the
difference function

0_2 oo
i =o.2o7k§jdzj—i—2—dﬁjd'?‘1’,.('?:2)
0 nD

x
§ cos| A7y x: 2)] MEP G 1, cos| (72, x: 2)]
n/i sin[ﬁ(‘yh X z)] N 2 Sin[Pz('}’z. K; Z)]
» K Py, K 2)
y G,'(y )cos[ A(n.« z)] -A*(i{‘;f),z)G;( K) cos[ (72, K3 2)) Ay
sin[ R (7, x: z)] sin[ P>(7,. x +2)]
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OBJECT BEACON

Figure A-4. Anisoplanatic error occurs when the beacon rays that impinge on a point in the collection aperture
follow a different path than the rays from the object under observation. Within a phase screen at range 7', the two
rays pass through points that are separated by the vector displacemen: d.

which defines both the phase and log-amplitude error. For space-to-ground propagation, the foilowing
parametric definitions apply:

&,(x;z) = turbulence spectrum,

A( K:p, z) = amplitude ratio of the second beam relative to the first,

P(y,x;z) = yx*z/2ky = propagation parameter,
Y = (L-z)/L for a source positioned at range L, and

G(yk) = Jd 7’ g(F*)exp[iyK-7’] = aperture filter function.

It is important to recognize that the character of the the amplitude ratio will depend on the specification
of the aperture filter function. When G, and G, are unity, A(K;p,z} describes the ratio between each pair
of phase points at range z that lie along rays intersecting the collection aperture at point p; in this case
an integration over p is required to obtain the average variance. If filier functions representing an
aperture-average Zemike component (such as piston or tilt) are used, however, the amplitude ratio is then
computed only for the beam centroids, in which case A{X;z) will be a function of z but independent of 3.

65




With the introduction of Equation (A-43), two quantities can be computed that are of great interest
to the astronomical community. The first relates to the issue of tracking stability, and the second defines
the residual figure error that can be expected with the application of laser guide stars.

2731929

BEAM #1 BEAM #2

Figure A-5. Many turbulence calculations involve two separate beams. For adaptive-optics correction, one beam
may represent the light from a beacon, whereas the second beam is the light received from a celestial object.

Tilt Component of Offset Anisoplanatism. For situations in which the object under observation is
too dim to track directly, a bright neighboring star might be used as the reference beacon. However, this
geometry will give rise to a differential tilt due to the angular displacement, ¥, between the two objects.

As indicated in previous discussions, the aperture filter function for single-axis tilt is
2
8 [412(“)/2)}
(0P I xD2 |

The effect of an angular offset of 9 is introduced into the variance expression through the amplitude
function

Gan(¥)= (A-44)

A(R;2) = explik- Bz] | (A-45)

which represents a phase shift due to a beam-centroid displacement that increases linearly with range.
Combining the last two relationships with equation (A-43) produces the following expression for tilt
variance for Kolmogorov turbulence:
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hoi 2 5
41,(x D2
0%, =0.207k3 [ dzC2(2) [ do dcx~¥?| — [ 1,(xD2)

] 2[] ~ cos{x Bz cos(¢)}].

2
0 0o 0 (ko D) xD/2
(A-46)
The integral over ¢ is accomplished through the application of the Bessel function identity
2r
Jn(x) =5 Jd(p cos[x cos(p) + n(p] (A-47)

which yields

0 koD xkD/2

Although the « integration indicated in this equation can be performed directly using Mellin transforms
that result in an expression containing generalized hypergeometric functions, for small displacement
angles the correct result can be obtained by first expanding [1 Jo(x'oz)] in a Taylor's series. The
integral for the first term of the expansion is then obtained using the Mellin transform for J2 (x) given
in Equation (A-35) for s = -5/3

- - TP
Ghn = 1.30k5 jdzC,?(z)J'dxx's/{( 8 7 ][412('(1)’2)} [2-2Jp(k02)] . (A-48)
0

O = 5.34sec’(¢ ) DBy, 8% (rad? of single-axis tilt) . (A-49)

This approximation is reasonably accurate for O < (D/4 X 10 m). When normalized to the d;ffraction-
limited beam diameter, the beam jitter is seen to be proportional to sec” 2(§ ) At DV u2 3.

Figure Component of Focal Anisoplanatism. Laser guide stars are required to perform high-
spatial-frequency compensation on objects that are too dim to provide phase information to the wavefront
sensor of an adaptive-optics system. This compensation geometry results in an error known as focal
anisoplanatism, and is one of the principal errors associated with guide-star imaging. As indicated in
Figure A-6, the turbulence above the beacon is unsampled and therefore completely uncorrected. The
residual figure error associated with this high-altitude component is taken from Equation (A-40):

=0.0567k3 D*?sec()ug (H)

UPP“ (A-50)
where the notation
uy(H)= [dhh" C2(h)
H (A-51)

has been introduced to represent the upper fractional moment computed from the beacon altitude, H, to
the top of the atmosphere.
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Figure A-6. The vertical rays represent light originating from a distant source that accumulate phase error in
traveling through the atmosphere to the telescope. Radiation from the laser guide-star follows a slightly different
path to the telescope and is therefore unable 1o sample turbulence distortions above the beacon altitude or to
precisely sample the turbulence that lies below the beacon.

Below the beacon, the object and beacon rays that strike a point p in the collection aperture are
displaced from one another by a distance

d(piz) = BZZ' (A-52)

at a range z from the pupil plane. Therefore, from Equation (A-43). the total phase error due to the
turbulence below the beacon is

L 2n = 4 2r D2 xpz )
_ 2 2 83 4 _ xpz
0%—0.207k0£dzcn(z)£d‘p£dcx ”ngd" (J;dpp[z 2°°5( L °°S(9),]. (A-53)
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The integrals over 8 and p can be performed by applying the Bessel function identities

n+l

27
J"(x)a—z—l;r—jde cos|x cos(8)+n8] and dex"*'Jn(ax)sx—a~J,,+,(ax) . (A-54)
0

with the result

L 21[ oo
- J(KDZ/ZL)
=0.207k2 [ dz C? do [ac k783|242 72/ X
03 =0.20 ko_([ 2 ,,(2)2[ <p£ AL (A-55)

The integration over x is accomplished by applying the Mellin transform
o T11/2+5/2
M[Jl(Jc)—f-]=2‘ 1 [l2+52]
2 I"{3/ 2-5s/ 2]

for s = -8/3. In the final expression, all the integrals have been performed analytically except for the
fractional moment computed between the receiver and the beacon altitude

(A-56)

Equation (A-57) represents the total error due to the turbulence below the beacon. To compute the
figure component of this error, the piston and tilt terms must be removed. If the beacon is placed over
the center of the receiving aperture, the amplitude ratio A(i‘;z) will be unity, but the values of ¥ for the
object and beacon beams will be 1 and 1-z/Z, respectively. Thus, from the aperture filter functions given
earlier in Equations (A-26) and (A-34),

L oo
0y = 1.30k5 [dzC(z) [ k™33 42
0 0

1,(xD2) I, (kD(1-2/1)/2)]
xD/2 xD(1-z/L)/ ,  (A-58)

where the value of v is 1 for piston and 2 for iilt. A Taylor’s series expansion of the second Bessel
function and its denominator about the point xD/2 yields an expression for which the leading term is
quadratic in the expansion parameter z/L ;

L Lt 2 ’ 2
_ 2 ) -834.2({ % —JV(KD/2)+(K‘D/’z)JV(K'D/z)
a;~1.30k0(j)dzc,,(z)£¢cx 4v (L) [ <D)2 . (A-59)

This can be further simplified using the identity nJ,(x)-xJ,(x)=xJ,,;(x) to give
1,(xD2)T

L oo 2
2 _ 2 2 -834.,2( £ | Yl A S &
0y =1.30kg _([dzC,,(z) ;').d(‘ K4y (L) [ Ty (kD/2)+(v-1)~~* xD;2 ] . (A-69)
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The x integration is performed using the Mellin transform identities found in Appendix B, from which
the following two quantities are derived:

0-42, ~0.0833 D k2 sec({) 22 ‘uj; ) for the piston component, (A-61)

and

05 =0.354 D k§ sec( )#2( ) for the tiit component. (A-62)

Combining these results with Equation (A-57) yields the figure variance due to turbulence that is improp-
erly sampled below a laser guide star

4
Ches = D &3 (g){o soots 35(/3) 0.4371‘-2;5‘2’12} , (A-63)

The net figure error that would result from a beacon placed at an altitude H over the center of the
collection aperture is the sum of Equations (A-50) and (A-63);

H 2(H
o';‘;gm =D sec(g)[o 0567 1y (H) +0.500 ;1/35(/3 )-0 437”}5 )] . (A-64)
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APPENDIX B—RELATIONSHIPS APPLIED IN THE ANALYTICAL
TREATMENT OF TURBULENCE

B.1 PROPERTIES OF THE MELLIN TR/ NSFORM

The Mellin transform G(s) of the function g(x) is defined as
G(s)= M[g(x)] = [dxx""g(x) . (B-1)
0

The structure of this relationship yields the following set of identities, which are frequently invoked in
the application of Mellin transforms to turbulence problems:

M{-g(x)] =-M[e(x)] . (-2

M|g(ax)]=a™ M[g(x)] . (B-3)

and

M[Zg,-(x)] = 2 M[g,-(x)] ) (B-4)

It can also be shown that the convolution of two functions can be derived from the product of their
transforms;

M []—‘!ylgl (x)&2 (x/y)} = M[g,(0)]M[e2(x)] . (B-5)
0

The principal benefit of the Mellin transform for turbulence calculations derives from the ready
availability of standard transform tables that encompass a wide range of interesting problems; see Table
B-1. The solutions typically involve the ratio of the product of gamma functions, and as a result the
following notation is adopted:

rl:a,,...,amjlz o) IMe,)
ﬂl""'ﬁn r[ﬁl]r[ﬁn] : (B-6)
Because the only singularities of this ratio occur when the arguments of the gamma functions in the

numerator are negative, pole-residue integration can be used to obtain a power-series expansion for all
expressions of this form.
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TABLE B-1
Partial List of Mellin Transforms
Mlg(x)]= [dxx*Tg(x
o(x) [8(x)] ({ 8(x)
exp(-x) I(s] >0
1/2+5/2
S
sin(x) r F[l s/2] ~l<s<1
5/2
2 Wrr
cos(x) Vr [I/Z—s/Z] O<s<1
Q-1 si2+v/2
Jy(x) vid2+l—s/2 -v<s<3/2
R 1 s/124v,1/2-5/2
Jy(x) W |vil-s/2,1-5/2 —2v<s<l]
1 r .5/2-4-1—1ii -‘-—s/21 s/2
— —-+A<s<l
AP A PIRYE S0 N VP PN Py g
<V 551 s/12+v/2
TR =v vI2+1-5/2 TV2<s<-v
2v -
J%(x)—-—ii———z- __]__ sI124v,1/2-5/2 Covid <5< -2V
22¥(vY) 2V (v+l-5/2,1-5/2
J, (x)J, (x
u *()l L s12+8A L_512,1-5/2
xH* P A4 < 5 < —p-A
Ty 24T |- s12+ 82 1 _sra R 5 04 250

B.2 APERTURE FILTER FUNCTIONS

The filter functions used to obtain the Zemnike modes for a circular aperture are listed below. Also
given are the filters for the second-moment quantities obtained with a finite receive aperture and a finite-
size source.
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B.2.1 Zernike Modes

The general formula for the filter function associated with a Zemike component on a circular
aperture of diameter D derives from Noll [42];

Fon(X), 2cos?(me)

_ 2J,.,(xD/2 .2
Fn(K), =‘"“)[—"“E]’(Dx7iﬁ)} 2sin"(me) (B-7)
Fou(R) Hm=9

The piston phase-variance filter function is

25,(xD/ 2)]2
, (B-8)

F(ﬁ)=[ xD/2

which must be multiplied by ( i/ko)2 to obtain the mean-squared value. The function used to determine
the x, y, and total phase variance associated with aperture tilt is

F(x) ) cosz((p)
F,(¥) =[4_-’2_’§_l';702/_21] sin’(p) (B-9)
F(k)

from which the variance for the single axis tiit angle can be obtained by multiplying by 84k0D)°.

In some problems the variance must be calculated with some of the Zemike modes removed. This
is easily accomplished by subtracting the phase variance due 1o these components from the total variance.
For instance, the filter function to remove piston and tilt variance from a single wave is

2 2
oy _ . |24(xD/2)|" 1 4J,(xD/2)
F(x)=1 [ kD72 } [ kD/2 | - (B-10)

B.2.2 Gradient Tilt

The gradient, or G-tilt, is equal to the average phase gradient over the receiver aperture. The filter
function for G-tilt variance over a circular aperture is
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F, (%) cos’ ()
F,(K)}=J}(xD/2)sin* () (B-11)
F(F) 1

The single-axis tilt-angle variance is obtained from the above by multiplying by 8/4k,D).

B.2.3 Filter Functions For Finite-Size Apertures And Distributed Sources

The coherent average of a quantity from a point source at a range L over a receive aperture is equal
to the piston of the quantity, which is given by

F(;‘c)z[z J,(xD(]~z/L)/2)]2
kD(1-z/L)/2 | -

(B-12)
where Z is the range variable. If the point source is at a very long range, this reduces to
2
F(x) {21%)%/22_)] _ (B-13)
The filter function for an incoherent source of diameter D, is
_. [ (xDz12L)T
F(")=[2w} (B-14)

The filter function for an incoherent source of diameter, D, received coherently by a receive aperture of
diameter D, is the product of Equations (B-12) and (B-14),

F(R)=[2 DU =2/ 1)12) T, h(xD,z/2L) 2
(k)= xkD(1-z/L)/2 xD,z/2L

(B-15)

B.2.4 Filter Functions For Focal Anisoplanatism

The filter function for the difference of two waves can be found by integrating the phase over the
source and the aperture. The function for focal anisoplanatism with a uniform circular source offset p
from boresight is

F(R)=1

_,2\(kDz/2L) 2Jy(kDz/2L) (sz)+{2 J,(KDSz/ZL)]z

xD;z/2L  xDz/2L L xD,z/2L (B-16)
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The filter function for focal anisoplanatism with a uniform circular source on boresight is

F(§)=1-2

2J,(x1)sz/2L)?.J,(xD;/mL)J{7 J,(KD,:IZL)}: .
‘ 17y

kD;z/2L kDz/2L kD /2L

If the source diameter is zero, then one obtains the filter function for focal anisoplanatism with circular
symmetry for a point source with no offset

(B-18)

Ji (K’Dz/2L)
xkDz/2L

F(i‘)=2[1-—2

The filter function used to find the piston or tilt component of focal anisoplanatism with a uniform
circular source offset b from boresight is

2

2vJ,(xD/2) 2vJ,(xkD[1-z/L)/2) 2J,(xD,z/2L)]

- b ‘
xD/2 exP[l L] (xD[1-z/L]/2) (kD,z/s2L) | - (B-19)

s

F(R)=

B3 ERROR PROPAGATOR FUNCTION FOR SECTION STITCHING

The phase reconstruction process can be described by the matrix product
- AT R I ~
6=1(a'a) A1z=Bz (B-20)

in which g is a vector composed the x and y gradient measurements, (} is the phase vector, and A is the
matrix is defined as follows:

E=A¢ . (B-21)

If the gradient errors are uncorrelated, the error propagator (defined as the relationship between the
gradient error variance and the error vanance of the reconstructed phase) is given by

-1
Error Propagator = —}J——Trace[(/\’ A) ] , (B-22)
b

where N is the number of elements in the phase array. The error propagator is approximately unity for
a two-dimensional system composed of 100 phase points [16].

The prrpagation of low spatial-frequency errors due to section-tilt fluctuations in a multiple-beacon
systerr can be viewed as a reconstruction process in which the section tilts are viewed as local gradients
haviie a nun-zero correlation. In this case the error propagator function can be gencralized in the
following way:




Error Propagator = —I—Trace
No

((eca)”]

"

-

(B-23)

where C, is the correlation matrix and the A matrix is designed to produce a full-aperture tilt of zero. The

ic neol

correlation between orthogonal tilts is neg!
scparated by a distance, d, the correlation is [32)

oo

C(d)=-4.873cos(26,)
n=0

(=1

n!

="

n!

+9.746 cos*(6,) Y

n=0

r

n+3.n+l
n+5n+3 -n+lt

3
n+2

n+5,n+3,-n+%

,Yl+6

r

igible, but for parallel tilts between sections of diameter, D,

|

D,

d

)2n+l/3

D 2n+1/3
) 3 (8’24)

S

d

[

where 6, is the angle between the tilt vector and the separation vector. This function is independent of
the turbulence distribution.

The error propagator has been computed for 2 square matrix containing 4, 9. 16, and 25 aperture

sections, with the results shown in Figure B-1. To a good approximation,

Error Propagator = 0.11(D/ D, )5/3

over the range studied.
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Figure B-1. Error propagator for section-tilts associated with a multiple-beacon system. The computed values can
be approximated by the function 0.11{( D/D:)"'j,
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APPENDIX C—RELATIONSHIPS APPLIED IN THE
DERIVATION OF SYSTEM PERFORMANCE

C.1 TURBULENCE AND WIND PROFILES FOR PROPAGATION STUDIES

The following two models are frequently used by the laser-beam-control community to describe daytime
turbulence conditions:

SLC-Day turbulence model

C3(h) =0 :0m<A<19m
=4.008 X 10713 4-1.054 . 19m<A<230m
=1.300 X 10-15 :230m< A< 850 m (C-1)

=6.352 X 10~7 £-2.966 850m< A< 7,000 m
=6.209 X 10-16 4-0.6229 .7 000 m < £ < 20,000 m;

Hufnagel-Valley turbulence model [43]
C2(h) =5.94 x 1033 (w/27)2 #10 exp(-#/1000) + 2.7 X 10-16 exp(-A#/1500)
+ A exp(—A#/100) . (C-2)

The Hufnagel-Valley model has two free parameters, A and w. The first is normally set to 1.7 X
1071 m™23, and the second, which represents the average wind speed, can be adjusted to achieve the
desired high-altitude shape. The most common value for w is 21 m/sec, which yields an expression
referred to as the HV-21 model.

The temporal characteristics of turbulence usually assumed to follow the form proposed by Bufton
[44] are

o(h) = v, +30 exp{-—[(ﬁ — 9400) /4800]2} ‘ (C-3)
where the ground wind speed parameter, v & is usually set to 5 m/sec.

C.2 HARTMANN SENSOR PERFORMANCE EQUATIONS FOR AN n-DETECTOR
SUBARRAY

A Hartmann sensor having an arbitrarily large linear dynamic range can be constructed by devoting
an n X n matrix of detectors to each subaperture subarray. This strategy is particularly useful for low-
repetition-rate compensation systems for which the residual error at each correction cycle is likely to be
large. For a fixed dynamic range, the linearity will improve as the number of detectors is increased, but
a good trade-off is achieved when the beam diameter is approximately equal to the detector dimension.
Under these conditions a phase change of one wave across the subaperture will move the Hartmann spot
the length of one detector. Therefore,

Linear Dynamic Range =~ 2x(n~1) (rad/subaperture) . (C-4)
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The requisite dynamic range for open-loop turbulence correction can be obtained from the phase structure
function by replacing the displacement parameter r with the subaperture diameter d.. From Equation (2-4),

5/3 s C_S
D,(d,)=6.88(d /1) (€5

which is approximately one wave for a d/r, value of unity. To accommodate peak-to-peak fluctuations
that might be as much as a factor-of-3 stronger, a full range of order-3 waves would be needed; this
requirement could be satisfied with a 4 X 4-element detector array.

Generalizing from Equation (2-16), the gradient expression for an n X n subarray illuminated by
a Hartmann spot matched to the detector dimension is found to be

(i B )ri

2
d .
g=2nV}1+(—‘~} =] — (rad / subaperture) , (C-6)
r,

—

[SIE ¢
(I

n

0

where T represents the number of photoelectrons collected by the i pixel. The photon noise near null
is identical to that given in Equation (2-17), but the sensor noise expression is

n .
ngz ZL(‘_?.’__E_Q }[1+ s erms , (C-7)
i=1 GeNpe \ rO

n
where the substitution N, = 2217 has been made. Applying the identity
C i=l
Z(Zi—n—- l)2 = %n(n - 1)(n+ 1) shows that
i=1

472 1 1 d 2
0_2= T n(n" )(;+ ) 1+[’_§_J NZ i (C_g)
r mms
3(GeNpe) 0

Combining this result with Equation (2-17) yields the total figure error due to the wavefront sensor;

2n2[1+(d /r )2] ) 2
(02 ) TSN | ar? an=nn+ ) H[dj} N -9
figure ) . N 2 r s

noise e 3 ( Ge Npe ) 0

“

v . v -
photon noise sensor noise
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C.3 THE POWER SPECTRUM OF THE FIGURE COMPONENT OF TURBULENCE

A method for computing the phase power spectrum has been described by Greenwood and Fried
[21], who derive expressions as a function of aperture position for both tilt-included and tilt-removed
cases. The equations are greatly simplified if one uses the tilt-included case, assumes that the phase is
measured over a region of zero extent, and allows the point of measurement to lie at the center of a
circular aperture. The combination of the first and third of these assumptions yields a result that is
essentially equivalent to the tilt-removed case but with a greatly simplified mathematical structure.

The power spectrum developed by Greenwood and Fried is represented by the expression

1 - -
Fo(f)==5 [ W . T (7) &7 (C-10)
where 7 is the aperture-position vector and W, (7, f) is the phase-difference spectrum. For a circular

aperture of diameter D,

Wy (rf)=2.00(715,) " 15Dy sin?(#r/£,D) - (C-11)

where f, = v/nD represents a characteristic turbulence frequency and v is a wind velocity averaged over
the turbulence path

3/5
= {f’fﬁ} . (C-12)
Ho

The transfer function, T¢(F), comprises a set of 5 aperture-overlap integrals that are described in detail
in Greenwood and Fried [21]. For the simplifying assumptions outlined above, only two of these integrals
are non-zero, which yields the following representation of the figure (tilt-removed) transfer function:

8 cos"](r/D)—(r/D)[I ~(r/D)? ]”'2 —m :0<r<D
0 :D<r

(C-13)

Equation (C-10) can now be evaluated by combining Equations (C-11) and (C-13) and employing the
approximations sin%(x) = x?>~x#3 for small values of x = fr/f,D and sin’(x) = 1/2 for x iarge. The result is
an integral over the scalar radius parameter, r, having the form

];jr(fzrz - f‘;r4 ){cos‘l(r)— rll- r‘l]l/‘z}dr—l}'2 r(fzr2 - f;rA )dr : f small
Fopo [ 5 2 ’

%jr(%){cos"(r)— r[l - rz]m}dr— xj r(é—)dr - f large .

(70 0

(C-14)
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which can be solved with the aid of the following set of identities:

1 1 1
£’ cos™!(r)dr = -g— ; £r3 cos™!(r)dr = —36-’—15 ; £r5 cos™!(r)dr = 1_59_7%

1 1 C-15
r2 (l—rz)llzdr=£-;!r4 (]—r2)1/2d7=£;jr6 (1"‘72)}/2dl"=5——” ( )
0 0

O Sy

The final solution has a relatively simply form in the limit of very low and very high frequencies,
and an approximation to the complete function is obtained by joining these two expressions at their point
of intersection:

R e L A AL O
' 0.0326sec(£)k7 vsy3 £~ :£20.705D7 ' u5*%033 (C-16)

The units are rad? of phase error per Hz, and the integral of this function

[ E,(£)dr = 0.08sec()k2 D93 1y = 0.14(Dyry ) ©-17)
0

is about 5 percent larger than the expected result for the piston and tilt-removed variance averaged over
a circular aperture.
C.4 OPTIMIZATION OF THE SENSOR-NOISE EXPRESSION

The noise expressions for the phase and tracking sensors can usually be written in the form

cF=ax™+bx" , (C-18)
where x an optimization parameter, and the variables a and b are independent of x. Differentiating with
respect to x yields the solution

({m+n)
x= {-—'lb—} . (C-19)
ma
By combining Equations (C-18) and (C-19), the total error for the optimal value of x is computed:
o’ = (l)m/”'*h + (i)-"mn glrmmplmimen) (C-20)
m m
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The relative contributions of the two terms is as follows:

0'2=(m':_n)ol+(m':n)oz .

Therefore,

a.x'"=( z )o‘z and bx‘"=( z )02
m+n m+n

when x has been optimized.
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